Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 114(2): 348-358, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37698503

ABSTRACT

Cucurbit downy mildew, caused by Pseudoperonospora cubensis, is responsible for high economic losses worldwide in cucumber production. Synthetic pesticides or copper-based products are still important tools to manage the disease. However, the pathogen has developed resistance against common fungicides rather quickly, and there is a need for alternative plant-protecting agents. Glycyrrhiza glabra leaf extract is known for its antifungal activity and was highly effective in former bioassays and semi-commercial trials against downy mildew of cucumber. To elucidate the active ingredients and the mode of action, licorice leaf extract was here fractionated into five fractions (F1 to F5) with a newly developed and optimized separation process via flash chromatography. The crude extract (P1) and fraction F1 inhibited the zoospore release from sporangia, the zoospore germination, and germ tube development of P. cubensis almost completely on two cucumber cultivars, one tolerant and one susceptible to the pathogen. Infestation rates were reduced between 73 and 96%. F1 contained three previously reported antifungal polyphenols: glabranin, pinocembrin, and licoflavanon. Here, we report an additional new compound, naringenin. Furthermore, F5 is found here to show some protective effects against P. cubensis, based on either direct fungicidal or indirect effects via the host plant. The presented results show that licorice leaf extract can serve as an alternative plant protection agent, able to manage P. cubensis infestation on cucumber cultivars with differing levels of susceptibility by interfering with important early stages in the pathogen development.


Subject(s)
Fungicides, Industrial , Glycyrrhiza , Oomycetes , Antifungal Agents/pharmacology , Plant Diseases/prevention & control , Biological Assay , Fungicides, Industrial/pharmacology
2.
Plant Dis ; 106(12): 3133-3144, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35549324

ABSTRACT

The growing concern regarding the potential risks of pesticides and their impact on nontarget organisms stimulates the development and application of alternative, environmentally friendly products. It seems necessary to develop alternatives for conventional products and for those already widely used in organic agriculture, e.g., copper. Very importantly, such alternative products should not limit the productivity and profitability of agriculture. In this study, we examined the efficacy of licorice (Glycyrrhiza glabra) leaf extract as such an alternative. We tested its impact on the virulence of Pseudomonas syringae toward the model plant Arabidopsis thaliana and the crop plant tomato (Solanum lycopersicum) as well as of Clavibacter michiganensis, Xanthomonas campestris, and Phytophthora infestans toward tomato, at multiple levels. We demonstrate that licorice leaf extract acts as a direct fungicide and bactericide. Moreover, it acts against a metalaxyl-resistant P. infestans strain. In addition, the extract from licorice leaves influences the plant immune system, modulating the plant responses to the challenge with pathogen(s); this involves both salicylic acid and ethylene-based responses. Our results show that in addition to the well-known use of licorice root extract in medicine, the leaf extract can be an effective alternative in organic and integrated farming, contributing to copper reduction and resistance management.[Formula: see text] Copyright © 2022 The Author(s). This is an open-access article distributed under the CC BY 4.0 International license.


Subject(s)
Glycyrrhiza , Solanum lycopersicum , Copper , Plant Diseases/prevention & control , Pseudomonas syringae , Plant Extracts/pharmacology
3.
J Plant Physiol ; 185: 52-6, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26276405

ABSTRACT

According to microscopic observations, germinating hyphae of Botrytis cinerea, though easily penetrating Mesembryanthemum crystallinum mesophyll tissue, are limited in growth in mid-ribs and only occasionally reach vascular bundles. In mid-ribs of C3 and CAM leaves, we found significantly lower rbcL (large RubisCO subunit) abundance. Moreover, in CAM leaves, minute transcript contents for pepc1 (phosphoenolpyruvate carboxylase) and nadpme1 (malic enzyme) genes found in the mid-ribs suggest that they perform ß-carboxylation at a low rate. The gene of the main H2O2-scavenging enzyme, catL (catalase), showed lower expression in C3 mid-rib parts in comparison to mesophyll. This allows maintenance of higher H2O2 quantities in mid-rib parts. In C3 leaves, pathogen infection does not impact photosynthesis. However, in CAM plants, the expression profiles of rbcL and nadpme1 were similar under biotic stress, with transcript down-regulation in mid-ribs and up-regulation in mesophyll (however, in case of rbcL not significant). After B. cinerea infection in C3 plants, transcripts for both antioxidative proteins strongly increased in mid-ribs, but not in mesophyll. In infected CAM plants, a significant transcript increase in the mesophyll was parallel to its decrease in the mid-rib region (however, in the case of catL this was not significant). Pathogen infection modified the expression of carbon and ROS metabolism genes in mid-ribs and mesophyll, resulting in the establishment of successful leaf defense.


Subject(s)
Botrytis/physiology , Gene Expression Regulation, Plant , Mesembryanthemum/genetics , Mesembryanthemum/microbiology , Plant Proteins/genetics , Mesembryanthemum/metabolism , Mesophyll Cells/metabolism , Mesophyll Cells/microbiology , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/metabolism
4.
Plant Dis ; 94(5): 575-580, 2010 May.
Article in English | MEDLINE | ID: mdl-30754462

ABSTRACT

The ability of sage (Salvia officinalis) extract to control grapevine downy mildew under greenhouse and field conditions was tested. The persistence and rainfastness of sage extract were also investigated. Sage extract provided a high level of sustained disease control in artificially inoculated, potted grapevine under greenhouse conditions. However, even small amounts of simulated rainfall (10 mm) significantly reduced efficacy of sage extract. In a field experiment in 2006, sage extract provided 94% reduction in disease incidence and 63% reduction in area under the disease progress curve for disease severity on berries and leaves, respectively, reaching a level of disease control not significantly different from that provided by copper hydroxide. In 2007, the sage extract provided only a partial reduction (less than 30%) of downy mildew on leaves, probably as a result of a long rainy period between two of the consecutive treatments. Overall, sage extract effectively controlled grapevine downy mildew and could be a promising alternative to copper in organic viticulture. However, the low rainfastness of this treatment adversely affected its efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL
...