Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Exp Biol ; 216(Pt 8): 1458-69, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23264488

ABSTRACT

Oyster larvae (Crassostrea virginica) could enhance their settlement success by moving toward the seafloor in the strong turbulence associated with coastal habitats. We characterized the behavior of individual oyster larvae in grid-generated turbulence by measuring larval velocities and flow velocities simultaneously using infrared particle image velocimetry. We estimated larval behavioral velocities and propulsive forces as functions of the kinetic energy dissipation rate ε, strain rate γ, vorticity ξ and acceleration α. In calm water most larvae had near-zero vertical velocities despite propelling themselves upward (swimming). In stronger turbulence all larvae used more propulsive force, but relative to the larval axis, larvae propelled themselves downward (diving) instead of upward more frequently and more forcefully. Vertical velocity magnitudes of both swimmers and divers increased with turbulence, but the swimming velocity leveled off as larvae were rotated away from their stable, velum-up orientation in strong turbulence. Diving speeds rose steadily with turbulence intensity to several times the terminal fall velocity in still water. Rapid dives may require a switch from ciliary swimming to another propulsive mode such as flapping the velum, which would become energetically efficient at the intermediate Reynolds numbers attained by larvae in strong turbulence. We expected larvae to respond to spatial or temporal velocity gradients, but although the diving frequency changed abruptly at a threshold acceleration, the variation in propulsive force and behavioral velocity was best explained by the dissipation rate. Downward propulsion could enhance oyster larval settlement by raising the probability of larval contact with oyster reef patches.


Subject(s)
Ostreidae/physiology , Algorithms , Animals , Larva/physiology , Rheology , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...