Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Musculoskelet Disord ; 23(1): 657, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35820904

ABSTRACT

BACKGROUND: Knee osteoarthritis is associated with higher kinetic friction in the knee joint, hence increased acoustic emissions during motion. Decreases in compressive load and improvements in movement quality might reduce this friction and, thus, sound amplitude. We investigated if an exercise treatment acutely affects knee joint sounds during different activities of daily life. METHODS: Eighteen participants with knee osteoarthritis (aged 51.8 ± 7.3 years; 14 females) were included in this randomized crossover trial. A neuromuscular exercise intervention and a placebo laser needle acupuncture treatment were performed. Before and after both interventions, knee joint sounds were measured during three different activities of daily living (standing up/sitting down, walking, descending stairs) by means of vibroarthrography. The mean amplitude (dB) and the median power frequency (MPF, Hz) were assessed at the medial tibial plateau and the patella. Differences in knee acoustic emissions between placebo and exercise interventions were calculated by analyses of covariance. RESULTS: Controlled for participant's age, knee demanding activity level and osteoarthritis stage, the conditions significantly differed in their impact on the MPF (mean(± SD) pre-post-differences standing up: placebo: 9.55(± 29.15) Hz/ exercise: 13.01(± 56.06) Hz, F = 4.9, p < 0.05) and the amplitude (standing up: placebo:0.75(± 1.43) dB/ exercise: 0.51(± 4.68) dB, F = 5.0, p < 0.05; sitting down: placebo: 0.07(± 1.21) dB/ exercise: -0.16(± .36) dB, F = 4.7, p < 0.05) at the tibia. There were no differences in the MPF and amplitude during walking and descending stairs (p > 0.05). At the patella, we found significant differences in the MPF during walking (placebo 0.08(± 1.42) Hz/ exercise: 15.76(± 64.25) Hz, F = 4.8, p < .05) and in the amplitude during descending stairs (placebo: 0.02 (± 2.72) dB/ exercise: -0.73(± 2.84) dB, F = 4.9, p < 0.05). There were no differences in standing up/ sitting down for both parameters, nor in descending stairs for the MPF and walking for the amplitude (p > 0.05). CONCLUSION: The MPF pre-post differences of the exercise intervention were higher compared to the MPF pre-post differences of the placebo treatment. The amplitude pre-post differences were lower in the exercise intervention. In particular, the sound amplitude might be an indicator for therapy effects in persons with knee osteoarthritis. TRIAL REGISTRATION: The study was retrospectively registered in the German Clinical Trials Register ( DRKS00022936 , date of registry: 26/08/2020).


Subject(s)
Osteoarthritis, Knee , Acoustics , Activities of Daily Living , Cross-Over Studies , Exercise Therapy , Female , Humans , Knee Joint , Osteoarthritis, Knee/complications , Osteoarthritis, Knee/therapy
2.
PLoS One ; 15(12): e0243646, 2020.
Article in English | MEDLINE | ID: mdl-33301541

ABSTRACT

BACKGROUND: In clinical practice range of motion (RoM) is usually assessed with low-cost devices such as a tape measure (TM) or a digital inclinometer (DI). However, the intra- and inter-rater reliability of typical RoM tests differ, which impairs the evaluation of therapy progress. More objective and reliable kinematic data can be obtained with the inertial motion capture system (IMC) by Xsens. The aim of this study was to obtain the intra- and inter-rater reliability of the TM, DI and IMC methods in five RoM tests: modified Thomas test (DI), shoulder test modified after Janda (DI), retroflexion of the trunk modified after Janda (DI), lateral inclination (TM) and fingertip-to-floor test (TM). METHODS: Two raters executed the RoM tests (TM or DI) in a randomized order on 22 healthy individuals while, simultaneously, the IMC data (Xsens MVN) was collected. After 15 warm-up repetitions, each rater recorded five measurements. FINDINGS: Intra-rater reliabilities were (almost) perfect for tests in all three devices (ICCs 0.886-0.996). Inter-rater reliability was substantial to (almost) perfect in the DI (ICCs 0.71-0.87) and the IMC methods (ICCs 0.61-0.993) and (almost) perfect in the TM methods (ICCs 0.923-0.961). The measurement error (ME) for the tests measured in degree (°) was 0.9-3.3° for the DI methods and 0.5-1.2° for the IMC approaches. In the tests measured in centimeters the ME was 0.5-1.3cm for the TM methods and 0.6-2.7cm for the IMC methods. Pearson correlations between the results of the DI or the TM respectively with the IMC results were significant in all tests except for the shoulder test on the right body side (r = 0.41-0.81). INTERPRETATION: Measurement repetitions of either one or multiple trained raters can be considered reliable in all three devices.


Subject(s)
Range of Motion, Articular , Adult , Biomechanical Phenomena , Female , Humans , Male , Observer Variation , Physical Examination/methods , Prospective Studies , Young Adult
3.
Environ Sci Eur ; 29(1): 23, 2017.
Article in English | MEDLINE | ID: mdl-28752018

ABSTRACT

Protecting our water resources in terms of quality and quantity is considered one of the big challenges of the twenty-first century, which requires global and multidisciplinary solutions. A specific threat to water resources, in particular, is the increased occurrence and frequency of flood events due to climate change which has significant environmental and socioeconomic impacts. In addition to climate change, flooding (or subsequent erosion and run-off) may be exacerbated by, or result from, land use activities, obstruction of waterways, or urbanization of floodplains, as well as mining and other anthropogenic activities that alter natural flow regimes. Climate change and other anthropogenic induced flood events threaten the quantity of water as well as the quality of ecosystems and associated aquatic life. The quality of water can be significantly reduced through the unintentional distribution of pollutants, damage of infrastructure, and distribution of sediments and suspended materials during flood events. To understand and predict how flood events and associated distribution of pollutants may impact ecosystem and human health, as well as infrastructure, large-scale interdisciplinary collaborative efforts are required, which involve ecotoxicologists, hydrologists, chemists, geoscientists, water engineers, and socioeconomists. The research network "project house water" consists of a number of experts from a wide range of disciplines and was established to improve our current understanding of flood events and associated societal and environmental impacts. The concept of project house and similar seed fund and boost fund projects was established by the RWTH Aachen University within the framework of the German excellence initiative with support of the German research foundation (DFG) to promote and fund interdisciplinary research projects and provide a platform for scientists to collaborate on innovative, challenging research. Project house water consists of six proof-of-concept studies in very diverse and interdisciplinary areas of research (ecotoxicology, water, and chemical process engineering, geography, sociology, economy). The goal is to promote and foster high-quality research in the areas of water research and flood-risk assessments that combine and build off-laboratory experiments with modeling, monitoring, and surveys, as well as the use of applied methods and techniques across a variety of disciplines.

4.
PLoS One ; 12(6): e0179630, 2017.
Article in English | MEDLINE | ID: mdl-28636619

ABSTRACT

Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists' style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science.


Subject(s)
Information Dissemination , Social Media , Communication , Humans , Internet
5.
Am J Bot ; 104(4): 573-583, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28428200

ABSTRACT

PREMISE OF THE STUDY: This paper investigates the occurrence and evolution of aluminum (Al) accumulation within ferns and lycophytes, which is characterized by Al concentrations above 1000 mg·kg-1 in aboveground plant tissues. We hypothesize that this feature is more common in ferns than in angiosperms, and potentially correlated with growth form and other chemical elements. METHODS: Aluminum concentrations were obtained from novel analyses and literature for a total of 354 specimens and 307 species. Moreover, a semiquantitative aluminon test was applied for a subset of 105 species and validated against exact Al measurements. KEY RESULTS: Molecular phylogenetic analyses showed that the major Al-accumulating groups were primarily found in the Gleicheniales and Cyatheales, and largely absent in the Polypodiales. At the species and generic level, Al accumulation was typically either absent or present, and mixed results within a single species and genus were limited to less than 30% of the species and genera tested. Epiphytic ferns had significantly lower Al levels than terrestrial ferns, although this finding was not significant after phylogenetic correction. In addition, a significant, positive correlation was found between Al and iron, while Al was negatively correlated with phosphorus and potassium concentrations. CONCLUSIONS: Aluminum accumulation is most common outside of the Polypodiales and occurs in 38% of the species studied, indicating that this trait is indeed common within subtropical and tropical ferns, a finding that could be in line with their role as pioneer species on landslides and soils with high levels of soluble Al.


Subject(s)
Aluminum/metabolism , Biological Evolution , Ferns/metabolism , Aluminum/analysis , Ferns/chemistry , Ferns/genetics , Phosphorus/analysis , Phylogeny , Potassium/analysis , Tracheophyta/chemistry , Tracheophyta/genetics , Tracheophyta/metabolism
6.
AoB Plants ; 82016.
Article in English | MEDLINE | ID: mdl-27613876

ABSTRACT

Aluminium (Al) is a phytotoxic element affecting the growth and yield of many crop plants, especially in the tropics. Yet, some plants are able to accumulate high levels of Al. The monogeneric family Symplocaceae represents an Al accumulating family including many tropical and evergreen species with high Al levels in their above ground plant tissues. It is unclear, however, whether Al accumulation also characterises temperate species of Symplocos, and whether or not the uptake has a beneficial growth effect. Here, we investigate if the temperate, deciduous species Symplocos paniculata is able to accumulate Al by growing seedlings and saplings in a hydroponic setup at pH 4 with and without Al. Pyrocatechol-violet (PCV) and aluminon staining was performed to visualize Al accumulation in various plant tissues. Both seedlings and saplings accumulate Al in their tissues if available. Mean Al levels in leaves were 4107 (±1474 mg kg-1) and 4290 (±4025 mg kg-1) for the seedlings and saplings, respectively. The saplings treated without Al showed a high mortality rate unlike the Al accumulating ones. The seedlings, however, showed no difference in growth and vitality between the two treatments. The saplings treated with Al showed new twig, leaf and root development, resulting in a considerable biomass increase. PCV and aluminon staining indicated the presence of Al in leaf, wood and bark tissue of the plants. S. paniculata shares the capacity to accumulate Al with its tropical sister species and is suggested to be a facultative accumulator. Whether or not Al has a beneficial effect remains unclear, due to developmental differences between seedlings and saplings. Al is suggested to be transported via the xylem transport system into the leaves, which show the highest Al levels. Radial transport via ray parenchyma to bark tissue is also likely given the high Al concentrations in the bark tissue.

7.
AoB Plants ; 82016.
Article in English | MEDLINE | ID: mdl-27354661

ABSTRACT

Ion-mediated enhancement of the hydraulic conductivity of xylem tissue (i.e. the ionic effect) has been reported for various angiosperm species. One explanation of the ionic effect is that it is caused by the swelling and shrinking of intervessel pit membranes due to the presence of pectins and/or other cell-wall matrix polymers such as heteroxylans or arabinogalactan-proteins (AGPs) that may contain acidic sugars. Here, we examined the ionic effect for six Acer species and their pit membrane chemistry using immunocytochemistry, including antibodies against glycoproteins. Moreover, anatomical features related to the bordered pit morphology and vessel dimensions were investigated using light and electron microscopy. The ionic effect varied from 18 % (± 9) to 32 % (± 13). Epitopes of homogalacturonan (LM18) and xylan (LM11) were not detected in intervessel pit membranes. Negative results were also obtained for glycoproteins (extensin: LM1, JIM20; AGP glycan: LM2), although AGP (JIM13)-related epitopes were detected in parenchyma cells. The mean vessel length was significantly correlated with the magnitude of the ionic effect, unlike other pit or vessel-related characteristics. Our results suggest that intervessel pit membranes of Acer are unlikely to contain pectic or other acidic polysaccharides. Therefore, alternative explanations should be tested to clarify the ionic effect.

8.
PLoS One ; 11(2): e0149078, 2016.
Article in English | MEDLINE | ID: mdl-26871698

ABSTRACT

Accumulation of Aluminium (Al) at concentrations far above 1,000 mg kg-1 in aboveground plant tissues of Arbor aluminosa (Symplocos) species is the main reason why traditional Indonesian weavers rely on their leaves and bark as a mordant for dyeing textile. Recently, Symplocos species have become a flagship species for the conservation efforts of weaving communities due to their traditionally non-sustainable sampling and increasing demand for Symplocos plant material. Here we investigated Symplocos odoratissima, S. ophirensis and S. ambangensis at three montane rainforest sites in Central Sulawesi to measure Al levels in different tissues and organs. The highest Al concentrations were found in old leaves (24,180 ± 7,236 mg·kg-1 dry weight, mean ± SD), while young leaves had significantly lower Al levels (20,708 ± 7,025 mg·kg-1). Al accumulation was also lower in bark and wood tissue of the trunk (17,231 ± 8,356 mg·kg-1 and 5,181 ± 2,032 mg·kg-1, respectively). Two Al excluding species (Syzigium sp. and Lithocarpus sp.) contained only high Al levels in their roots. Moreover, no difference was found in soil pH (4.7 ± 0.61) and nutrient (K, Ca, Fe, Mg) availability at different soil levels and within or outside the crown of Symplocos trees, except for the upper soil layer. Furthermore, a positive and significant correlation between Al and Ca concentrations was found at the whole plant level for Symplocos, and at the leaf level for S. ophirensis and S. ambangensis, suggesting a potential role of Ca in Al uptake and/or detoxification within the plant. Our results provide evidence for strong Al accumulation in Symplocos species and illustrate that both Al accumulation and exclusion represent two co-occurring strategies of montane rainforest plants for dealing with Al toxicity. Indonesian weavers should be encouraged to harvest old leaves, which have the most efficient mordant capacity due to high Al concentrations.


Subject(s)
Aluminum/metabolism , Soil Pollutants/metabolism , Trees/metabolism , Calcium/metabolism , Hydrogen-Ion Concentration , Indonesia , Plant Leaves/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...