Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 531
Filter
1.
Macromol Rapid Commun ; : e2400196, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830612

ABSTRACT

The utilization of two-component systems comprising camphorquinone (CQ) and aromatic amines has become prevalent in the photopolymerization of dental adhesives and composites. However, there are still concerns about the safety of this CQ/amine system, mainly because of the toxicity associated with the leaching of aromatic amines from dental materials. In light of these concerns, this study aims to develop novel co-initiator combinations featuring CQ and amines which cannot be leached out of dental materials, enabling free radical polymerization of representative dental methacrylate resins under blue light irradiation. Our approach involved the initial design and analysis of hydrogen donors with low C-H bond dissociation energy through molecular modeling. Subsequently, we incorporated copolymerizable methacrylate functional groups via chemical modification, allowing it to act as both coinitiator and copolymerization monomer to achieve low migration and leachability properties. This work presents, for the first time, the synthesis of the innovative co-initiator and compares its performance with the benchmark CQ/ethyl-4-dimethylaminobenzoate (EDB)-based photoinitiation system (PIS). The results demonstrate the effectiveness of the newly proposed PIS, with the comparable or superior polymerization properties were obtained when acrylate resins were subjected to photopolymerization using blue dental LEDs in ambient air. Furthermore, the system exhibited remarkable bleaching capabilities. Moreover, the elastic modulus of the resulting polymer was substantially enhanced. Finally, we conducted an in-depth investigation into the reaction mechanism associated with this PIS through molecular orbital calculations and electron spin resonance studies. This article is protected by copyright. All rights reserved.

2.
Blood ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805637

ABSTRACT

Anti-CD19 chimeric antigen receptor T-cells (CD19-CAR) represent an effective treatment for relapsed/refractory B-cell malignancies but incomplete responses often result in early disease progression. We here assessed potential benefits of co-administering CD20-targeting bispecific antibodies (CD20-BsAb) with CD19-CAR, aiming to enhance immunotherapeutic efficacy. Addition of CD20-BsAb to co-cultures of CD19-CAR and primary samples of B-cell malignancies, comprising malignant B- and endogenous T-cells, significantly improved killing of malignant cells alongside enhanced expansion of both endogenous T-cells and CD19-CAR. CD20-BsAb induced an increase in proliferation and activation of endogenous T-cells and CD19-CAR. In an immunocompetent mouse model of CLL, relapse after initial treatment response frequently occurred after CD19-CAR monotherapy. Combination with injections of CD20-BsAb significantly enhanced treatment response and resulted in improved eradication of malignant cells. Higher efficacy was accompanied by improved T-cell expansion upon CD20-BsAb administration and resulted in longer survival, with 80% of mice being cured with no detectable malignant cell population within eight weeks of therapy initiation. Collectively, our in-vitro and in-vivo data demonstrate enhanced therapeutic efficacy of CD19-CAR when combined with CD20-BsAb in B-cell malignancies. Activation and proliferation of both infused CAR T-cells as well as endogenous T-cells may contribute to improved disease control.

3.
J Bacteriol ; : e0012424, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809016

ABSTRACT

Corynebacterium diphtheriae is the causative agent of diphtheria, a severe respiratory disease in humans. C. diphtheriae colonizes the human upper respiratory tract, where it acquires zinc, an essential metal required for survival in the host. While the mechanisms for zinc transport by C. diphtheriae are not well characterized, four putative zinc ABC-type transporter loci were recently identified in strain 1737: iutABCD/E (iut), znuACB (znu), nikABCD1 (nik1), and nikABCD2 (nik2). A mutant deleted for all four loci (Δ4) exhibited similar growth to that of the wild-type strain in a zinc-limited medium, suggesting there are additional zinc transporters. Two additional gene loci predicted to be associated with metal import, mntABCD (mnt) and sidAB (sid), were deleted in the Δ4 mutant to construct a new mutant designated Δ6. The C. diphtheriae Δ6 mutant exhibited significantly reduced growth under zinc limitation relative to the wild type, suggesting a deficiency in zinc acquisition. Strains retaining the iut, znu, mnt, or sid loci grew to near-wild-type levels in the absence of the other five loci, indicating that each of these transporters may be involved in zinc uptake. Plasmid complementation with cloned iut, znu, mnt, or nik1 loci also enhanced the growth of the Δ6 mutant. Quantification of intracellular zinc content by inductively coupled plasma mass spectrometry was consistent with reduced zinc uptake by Δ6 relative to the wild type and further supports a zinc uptake function for the transporters encoded by iut, znu, and mnt. This study demonstrates that C. diphtheriae zinc transport is complex and involves multiple zinc uptake systems.IMPORTANCEZinc is a critical nutrient for all forms of life, including human bacterial pathogens. Thus, the tools that bacteria use to acquire zinc from host sources are crucial for pathogenesis. While potential candidates for zinc importers have been identified in Corynebacterium diphtheriae from gene expression studies, to date, no study has clearly demonstrated this function for any of the putative transporters. We show that C. diphtheriae encodes at least six loci associated with zinc import, underscoring the extent of redundancy for zinc acquisition. Furthermore, we provide evidence that a previously studied manganese-regulated importer can also function in zinc import. This study builds upon our knowledge of bacterial zinc transport mechanisms and identifies potential targets for future diphtheria vaccine candidates.

4.
Int J Cancer ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721724

ABSTRACT

Immunocompromised patients are at high risk to fail clearance of SARS-CoV-2. Prolonged COVID-19 constitutes a health risk and a management problem as cancer treatments often have to be disrupted. As SARS-CoV-2 evolves, new variants of concern have emerged that evade available monoclonal antibodies. Moreover, antiviral therapy promotes SARS-CoV-2 escape mutations, particularly in immunocompromised patients. These patients frequently suffer from prolonged infection. No successful treatment has been established for persistent COVID-19 infection. Here, we report on a series of 21 immunocompromised patients with COVID-19-most of them hematologic malignancies-treated with plasma obtained from recently convalescent or vaccinated donors or a combination thereof. Repeated dosing of SARS-CoV-2-antibody-containing plasma could clear SARS-CoV-2 infection in 16 out of 21 immunocompromised patients even if COVID-19-specific treatments failed to induce sustained viral clearance or to improve clinical course of SARS-CoV-2 infection. Ten patients were major responders defined as an increase delta(d)Ct of > = 5 after the first administration of convalescent and/or vaccinated plasma (C/VP). On average, SARS-CoV-2 PCR Ct values increased from a median value of 22.55 (IQR = 19.10-24.25) to a median value of 29.57 (IQR = 27.55-34.63; p = <.0001) in the major response subgroup. Furthermore, when treated a second time with C/VP, even 4 out of 5 of the initial nonresponders showed an increase in Ct-values from a median value of 23.13 (IQR = 17.75-28.05) to a median value of 32.79 (IQR = 31.75-33.75; p = .013). Our results suggest that C/VP could be a feasible treatment of COVID-19 infection in patients with hematologic malignancies who did not respond to antiviral treatment.

6.
Sci Immunol ; 9(95): eadj7970, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701193

ABSTRACT

Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.


Subject(s)
B7 Antigens , Killer Cells, Natural , T-Lymphocytes , Humans , Killer Cells, Natural/immunology , Animals , Mice , B7 Antigens/immunology , T-Lymphocytes/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Lymphocyte Activation/immunology , Female , Esophageal Neoplasms/immunology
7.
Biotechnol Prog ; : e3476, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687144

ABSTRACT

High throughput process development (HTPD) is established for time- and resource- efficient chromatographic process development. However, integration with non-chromatographic operations within a monoclonal antibody (mAb) purification train is less developed. An area of importance is the development of low pH viral inactivation (VI) that follows protein A chromatography. However, the lack of pH measurement devices at the micro-scale represents a barrier to implementation, which prevents integration with the surrounding unit operations, limiting overall process knowledge. This study is based upon the design and testing of a HTPD platform for integration of the protein A and low pH VI operations. This was achieved by using a design and simulation software before execution on an automated liquid handler. The operations were successfully translated to the micro-scale, as assessed by analysis of recoveries and molecular weight content. The integrated platform was then used as a tool to assess the effect of pH on HMWC during low pH hold. The laboratory-scale and micro-scale elution pools showed comparable HMWC across the pH range 3.2-3.7. The investigative power of the platform is highlighted by evaluating the resources required to conduct a hypothetical experiment. This results in lower resource demands and increased labor efficiency relative to the laboratory-scale. For example, the experiment can be conducted in 7 h, compared to 105 h, translating to labor hours, 3 h and 28 h for the micro-scale and laboratory-scale, respectively. This presents the opportunity for further integration beyond chromatographic operations within the purification sequence, to establish a fit-to-platform assessment tool for mAb process development.

8.
EClinicalMedicine ; 69: 102504, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38544797

ABSTRACT

Background: Assessment of cardiovascular risk is critical for patients with cancer. Previous retrospective studies suggest potential cardiotoxicity of CAR T cell therapies. We aimed to prospectively assess cardiotoxicity and the predictive value of cardiac biomarkers and classical risk factors (age, cardiac function, diabetes, arterial hypertension, smoking) for cardiac events and all-cause mortality (ACM). Methods: In this prospective cohort study, all patients treated with CAR T cell constructs (axi-cel, tisa-cel, brexu-cel, ide-cel, or the 3rd generation CAR HD-CAR-1) from Oct 1, 2018, to Sept 30, 2022 at the University Hospital Heidelberg were included. Surveillance included cardiac assessment with biomarkers (high-sensitive Troponin T (hs-cTnT), N-terminal brain natriuretic peptide (NT-proBNP)), 12-lead-ECG, and 2D echocardiography. ACM was defined as the primary study endpoint, while cardiotoxicity, defined by clinical syndromes of heart failure or decline in ejection fraction, served as a secondary endpoint. Findings: Overall, 137 patients (median age 60, range 20-83, IQR 16), were included in the study. 46 patients died during the follow up period (median 0.75 years, range 0.02-4.33, IQR 0.89) 57 month, with a median survival of 0.57 years (range 0.03-2.38 years, IQR 0.79). A septal wall thickness above 11 mm (HR 2.48, 95%-CI = 1.10-5.67, p = 0.029) was associated with an increased risk of ACM, with a trend seen for reduced left ventricular ejection fraction prior to therapy (LVEF <40%; HR 9.17, 95%-CI = 1.30-183.11, p = 0.051). Secondary endpoint was reached by 93 patients while no baseline parameter was able to predict an elevated risk. However, hs-cTnT change from baseline of 50% or more during the first 14 days after CAR infusion predicted ACM (HR 3.81, 95%-CI = 1.58-9.45; p = 0.003). None of the baseline characteristics was able to predict the incidence of cardiac events. Interpretation: Reduced pre-lymphodepletion ejection fraction and early post-infusion biomarker kinetics may be associated with increased ACM and cardiotoxicity events. These findings may help to identify patients who could benefit from intensified cardio-oncological surveillance. Funding: The German Center for Cardiovascular Research, German Research Foundation, and the Federal Ministry of Education and Research.

9.
Small ; : e2400230, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38501752

ABSTRACT

A series of 15 dyes based on the 2-phenylnaphtho[2,3-d]thiazole-4,9-dione scaffold and 1 compound based on the 2,3-diphenyl-1,2,3,4-tetrahydrobenzo[g]quinoxaline-5,10-dione scaffold are studied as photoinitiators. These compounds are used in two- and three-component high-performance photoinitiating systems for the free radical polymerization of trimethylolpropane triacrylate (TMPTA) and polyethylene glycol diacrylate (PEGDA) under sunlight. Remarkably, the conversion of TMPTA can reach ≈60% within 20 s, while PEGDA attains a 96% conversion within 90 s. To delve into the intricate chemical mechanisms governing the polymerization, an array of analytical techniques is employed. Specifically, UV-vis absorption and fluorescence spectroscopy, steady-state photolysis, stability experiments, fluorescence quenching experiments, cyclic voltammetry, and electron spin resonance spin trapping (ESR-ST) experiments, collectively contribute to a comprehensive understanding of the photochemical mechanisms. Photoinitiation capacities of these systems are determined using real-time Fourier transformed infrared spectroscopy (RT-FTIR). Of particular interest is the revelation that, owing to the superior initiation ability of these dyes, high-resolution 3D patterns can be manufactured by direct laser write (DLW) technology and 3D printing. This underscores the efficient initiation of free radical polymerization processes by the newly developed dyes under both artificial and natural light sources, presenting an avenue for energy-saving, and environmentally friendly polymerization conditions.

10.
Blood Adv ; 8(11): 2675-2690, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38359409

ABSTRACT

ABSTRACT: Graft-versus-host disease (GVHD) occurs in about 10% to 33% of patients receiving "allogeneic" or "autologous" chimeric antigen receptor T (CAR-T) cells after preceding allogeneic hematopoietic stem cell transplantation (allo-HSCT) due to the substantial presence of alloreactive T cells. Extracorporeal photopheresis (ECP) shows promising clinical outcomes in the treatment of GVHD after allo-HSCT without hampering antitumor and antiviral effects. This raises an interesting question: whether ECP might constitute a new way to treat patients with GVHD after CAR T-cell therapy without compromising CAR-T cells significantly. Third-generation CD19-specific CAR-T cells were generated and an in vitro ECP protocol was established. The impact of ECP on CAR-T cells was comprehensively investigated in 2 models: the nondilution model reflects days after CAR T-cell infusion and the dilution model weeks after infusion. The therapeutic effect of ECP on GVHD was examined in an in vitro mixed lymphocyte reaction (MLR) assay. We found, ECP-treated CAR-T cells demonstrated reduced potency in inducing alloreaction compared with that of the group without ECP treatment in MLR assay. ECP could selectively induce apoptosis, thereby enriching the naive and central memory CAR-T cells with a reduced alloreactivity. The cytokine milieu of CAR-T cells could be switched from immune stimulation to immune tolerance in both models. Moreover, ECP could modulate the proliferative capacity of CAR-T cells without hampering their long-term functionality in the dilution model. In conclusion, ECP constitutes a promising treatment strategy for GVHD after allo-HSCT and CAR T-cell transfusion, as ECP reduces the alloreactivity without hampering CAR T-cell functionality.


Subject(s)
Graft vs Host Disease , Immunotherapy, Adoptive , Photopheresis , Graft vs Host Disease/therapy , Graft vs Host Disease/etiology , Photopheresis/methods , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Receptors, Chimeric Antigen , T-Lymphocytes/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods
11.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338672

ABSTRACT

The search for target antigens for CAR-T cell therapy against multiple myeloma defined the B-cell maturation antigen (BCMA) as an interesting candidate. Several studies with BCMA-directed CAR-T cell therapy showed promising results. Second-generation point-of-care BCMA.CAR-T cells were manufactured to be of a GMP (good manufacturing practice) standard using the CliniMACS Prodigy® device. Cytokine release in BCMA.CAR-T cells after stimulation with BCMA positive versus negative myeloma cell lines, U266/HL60, was assessed via intracellular staining and flow cytometry. The short-term cytotoxic potency of CAR-T cells was evaluated by chromium-51 release, while the long-term potency used co-culture (3 days/round) at effector/target cell ratios of 1:1 and 1:4. To evaluate the activation and exhaustion of CAR-T cells, exhaustion markers were assessed via flow cytometry. Stability was tested through a comparison of these evaluations at different timepoints: d0 as well as d + 14, d + 90 and d + 365 of cryopreservation. As results, (1) Killing efficiency of U266 cells correlated with the dose of CAR-T cells in a classical 4 h chromium-release assay. There was no significant difference after cryopreservation on different timepoints. (2) In terms of endurance of BCMA.CAR-T cell function, BCMA.CAR-T cells kept their ability to kill all tumor cells over six rounds of co-culture. (3) BCMA.CAR-T cells released high amounts of cytokines upon stimulation with tumor cells. There was no significant difference in cytokine release after cryopreservation. According to the results, BCMA.CAR-T cells manufactured under GMP conditions exerted robust and specific killing of target tumor cells with a high release of cytokines. Even after 1 year of cryopreservation, cytotoxic functions were maintained at the same level. This gives clinicians sufficient time to adjust the timepoint of BCMA.CAR-T cell application to the patient's course of the underlying disease.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , B-Cell Maturation Antigen/metabolism , Point-of-Care Systems , Immunotherapy, Adoptive/methods , Multiple Myeloma/pathology , Cytokines/metabolism , T-Lymphocytes , Cryopreservation
12.
J Immunother Cancer ; 12(1)2024 01 31.
Article in English | MEDLINE | ID: mdl-38296597

ABSTRACT

BACKGROUND: Relapse and graft-versus-host disease (GVHD) are the main causes of death after allogeneic hematopoietic cell transplantation (HCT). Preclinical murine models and clinical data suggest that invariant natural killer T (iNKT) cells prevent acute and chronic GVHD. In addition, iNKT cells are crucial for efficient immune responses against malignancies and contribute to reduced relapse rates after transplantation. Chimeric antigen receptors (CAR) redirect effector cells to cell surface antigens and enhance killing of target cells. With this study, we aimed to combine enhanced cytotoxicity of CD19-CAR-iNKT cells against lymphoma cells with their tolerogenic properties. METHODS: iNKT cells were isolated from peripheral blood mononuclear cells and transduced with an anti-CD19-CAR retrovirus. After in vitro expansion, the functionality of CD19-CAR-iNKT cells was assessed by flow cytometry, image stream analysis and multiplex analysis in single-stimulation or repeated-stimulation assays. Moreover, the immunoregulatory properties of CD19-CAR-iNKT cells were analyzed in apoptosis assays and in mixed lymphocyte reactions. The effect of checkpoint inhibition through nivolumab was analyzed in these settings. RESULTS: In this study, we could show that the cytotoxicity of CD19-CAR-iNKT cells was mediated either through engagement of their CAR or their invariant T-cell receptor, which may circumvent loss of response through antigen escape. However, encounter of CD19-CAR-iNKT cells with their target induced a phenotype of exhaustion. Consequently, checkpoint inhibition increased cytokine release, cytotoxicity and survival of CD19-CAR-iNKT cells. Additionally, they showed robust suppression of alloreactive immune responses. CONCLUSION: In this work, we demonstrate that CAR-iNKT cells are a powerful cytotherapeutic option to prevent or treat relapse while potentially reducing the risk of GVHD after allogeneic HCT.


Subject(s)
Graft vs Host Disease , Natural Killer T-Cells , Receptors, Chimeric Antigen , Humans , Mice , Animals , Programmed Cell Death 1 Receptor , Antigens, CD19 , Graft vs Host Disease/etiology , Recurrence
13.
Blood ; 143(13): 1269-1281, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38197505

ABSTRACT

ABSTRACT: Acute myeloid leukemia (AML) is a hematologic malignancy for which allogeneic hematopoietic cell transplantation (allo-HCT) often remains the only curative therapeutic approach. However, incapability of T cells to recognize and eliminate residual leukemia stem cells might lead to an insufficient graft-versus-leukemia (GVL) effect and relapse. Here, we performed single-cell RNA-sequencing (scRNA-seq) on bone marrow (BM) T lymphocytes and CD34+ cells of 6 patients with AML 100 days after allo-HCT to identify T-cell signatures associated with either imminent relapse (REL) or durable complete remission (CR). We observed a higher frequency of cytotoxic CD8+ effector and gamma delta (γδ) T cells in CR vs REL samples. Pseudotime and gene regulatory network analyses revealed that CR CD8+ T cells were more advanced in maturation and had a stronger cytotoxicity signature, whereas REL samples were characterized by inflammatory tumor necrosis factor/NF-κB signaling and an immunosuppressive milieu. We identified ADGRG1/GPR56 as a surface marker enriched in CR CD8+ T cells and confirmed in a CD33-directed chimeric antigen receptor T cell/AML coculture model that GPR56 becomes upregulated on T cells upon antigen encounter and elimination of AML cells. We show that GPR56 continuously increases at the protein level on CD8+ T cells after allo-HCT and confirm faster interferon gamma (IFN-γ) secretion upon re-exposure to matched, but not unmatched, recipient AML cells in the GPR56+ vs GPR56- CD8+ T-cell fraction. Together, our data provide a single-cell reference map of BM-derived T cells after allo-HCT and propose GPR56 expression dynamics as a surrogate for antigen encounter after allo-HCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , CD8-Positive T-Lymphocytes/pathology , Recurrence
14.
Neural Netw ; 169: 698-712, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37976594

ABSTRACT

Synthetic aperture radar (SAR) images are widely used in remote sensing. Interpreting SAR images can be challenging due to their intrinsic speckle noise and grayscale nature. To address this issue, SAR colorization has emerged as a research direction to colorize gray scale SAR images while preserving the original spatial information and radiometric information. However, this research field is still in its early stages, and many limitations can be highlighted. In this paper, we propose a full research line for supervised learning-based approaches to SAR colorization. Our approach includes a protocol for generating synthetic color SAR images, several baselines, and an effective method based on the conditional generative adversarial network (cGAN) for SAR colorization. We also propose numerical assessment metrics for the problem at hand. To our knowledge, this is the first attempt to propose a research line for SAR colorization that includes a protocol, a benchmark, and a complete performance evaluation. Our extensive tests demonstrate the effectiveness of our proposed cGAN-based network for SAR colorization. The code is available at https://github.com/shenkqtx/SAR-Colorization-Benchmarking-Protocol.


Subject(s)
Benchmarking , Deep Learning , Radar , Knowledge
16.
Lancet Haematol ; 11(2): e127-e135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142695

ABSTRACT

BACKGROUND: In a pivotal phase 3 trial of cytomegalovirus prophylaxis with letermovir for up to 100 days after allogeneic haematopoietic stem-cell transplantation (HSCT), 12% of participants developed clinically significant cytomegalovirus infection after letermovir was discontinued. We aimed to evaluate the efficacy and safety of extending the duration of letermovir prophylaxis for clinically significant cytomegalovirus infection from 100 days to 200 days following HSCT. METHODS: We conducted a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial at 32 sites in six countries (France, Germany, Italy, Japan, the UK, and the USA). Cytomegalovirus­seropositive HSCT recipients (aged ≥18 years) who had received letermovir prophylaxis for up to 100 days following HSCT and who remained at high risk of late clinically significant cytomegalovirus infection (with no previous history of clinically significant cytomegalovirus infection, defined as initiation of pre-emptive therapy for documented cytomegalovirus viraemia, onset of cytomegalovirus end-organ disease, or both) were eligible. Participants were randomly assigned (2:1) to receive either an additional 100 days (ie, a total of 200 days; letermovir group) of oral or intravenous letermovir 480 mg once daily, adjusted to 240 mg once daily for participants on cyclosporin A, or 100 days of a placebo comparator for letermovir (ie, a total of 100 days of letermovir; placebo group), following HSCT. Randomisation was done using a central interactive response technology system, stratified by study centre and haploidentical donor (yes or no). Participants, investigators, and sponsor personnel were masked to the treatment allocation. The primary efficacy endpoint was the proportion of participants from randomisation to week 28 (200 days after HSCT) with clinically significant cytomegalovirus infection, analysed using the full analysis set population (ie, those who received at least one dose of study intervention). Safety was analysed in all participants as treated (ie, those who received at least one dose according to the study intervention they were assigned to). This study is registered with ClinicalTrials.gov, NCT03930615, and is complete. FINDINGS: Between June 21, 2019, and March 16, 2022, 255 patients were screened for eligibility and 220 (86%) were randomly assigned (145 [66%] in the letermovir group and 75 [34%] in the placebo group). Between randomisation and week 28, four (3%) of 144 participants in the letermovir group and 14 (19%) of 74 in the placebo group developed clinically significant cytomegalovirus infection (treatment difference -16·1% [95% CI -25·8 to -6·5]; p=0·0005). The most common adverse events among participants in the letermovir group versus the placebo group were graft-versus-host disease (43 [30%] vs 23 [31%]), diarrhoea (17 [12%] vs nine [12%]), nausea (16 [11%] vs 13 [18%]), pyrexia (13 [9%] vs nine [12%]), and decreased appetite (six [4%] vs nine [12%]). The most frequently reported serious adverse events were recurrent acute myeloid leukaemia (six [4%] vs none) and pneumonia (three [2%] vs two [3%]). No deaths were considered to be drug-related by the investigator. INTERPRETATION: Extending the duration of letermovir prophylaxis to 200 days following HSCT is efficacious and safe in reducing the incidence of late clinically significant cytomegalovirus infection in patients at risk. FUNDING: Merck Sharp & Dohme LLC.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Quinazolines , Humans , Adolescent , Adult , Neoplasm Recurrence, Local , Hematopoietic Stem Cell Transplantation/adverse effects , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Infections/chemically induced , Acetates/adverse effects , Double-Blind Method , Treatment Outcome
17.
Sensors (Basel) ; 23(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37960614

ABSTRACT

For the progress of point-of-care medicine, where individual health status can be easily and quickly monitored using a handheld sensor, saliva serves as one of the best-suited body fluids thanks to its availability and abundance of physiological indicators. Salivary biomarkers, combined with rapid and highly sensitive detection tools, may pave the way to new real-time health monitoring and personalized preventative therapy branches using saliva as a target matrix. Saliva is increasing in importance in liquid biopsy, a non-invasive approach that helps physicians diagnose and characterize specific diseases in patients. Here, we propose a proof-of-concept study combining the unique specificity in biomolecular recognition provided by surface-enhanced Raman spectroscopy (SERS) in combination with molecular dynamics (MD) simulations, which give leave to explore the biomolecular absorption mechanism on nanoparticle surfaces, in order to verify the traceability of two validated salivary indicators, i.e., interleukin-8 (IL-8) and lysozyme (LYZ), implicated in oropharyngeal squamous cell carcinoma (OSCC) and oral infection. This strategy simultaneously assures the detection and interpretation of protein biomarkers in saliva, ultimately opening a new route for the evolution of fast and accurate point-of-care SERS-based sensors of interest in precision medicine diagnostics.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Mouth Neoplasms/diagnosis , Point-of-Care Systems , Carcinoma, Squamous Cell/diagnosis , Head and Neck Neoplasms/diagnosis , Biomarkers/analysis , Saliva/chemistry , Spectrum Analysis, Raman , Biomarkers, Tumor/analysis
18.
Biomark Res ; 11(1): 91, 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37838756

ABSTRACT

Light chain amyloidosis (AL) is a rare disease caused by the generalized deposition of misfolded free light chains. Patients with immunoglobulin M gammopathy (IgM) and indolent B-cell lymphoma such as marginal zone lymphoma (MZL) may in some instances develop AL amyloidosis. So far, CAR T cells for AL amyloidosis have only been reported utilizing the B cell maturation antigen as target, while CD19 has so far not been used in AL amyloidosis.We report the case of a 71-year-old male, diagnosed with systemic AL kappa amyloidosis and MZL, receiving third-generation CAR T cell therapy targeting CD19. Prior treatment included bendamustine/rituximab and cyclophosphamide/ dexamethasone with subsequent autologous stem cell transplantation. CAR T application was well tolerated despite heart and kidney amyloid manifestations, and only early low-grade procedure-specific toxicities were observed. A continuous decrease in IgM, kappa light chains and kappa-to-lambda light chain difference was observed in the patient from day + 30 on, resulting in a deep hematological response six months after treatment.In summary, we present a novel case of CAR T cell treatment with third generation CD19 directed infusion for AL amyloidosis with an underlying secretory active B cell lymphoma, showing that this is an effective treatment modality and can be applied to patients with subsequent AL amyloidosis.

19.
Zookeys ; 1177: 1-2, 2023.
Article in English | MEDLINE | ID: mdl-37692320
20.
Zookeys ; 1177: 75-85, 2023.
Article in English | MEDLINE | ID: mdl-37692323

ABSTRACT

Armatures of the male intromittent copulatory structures have been surmised to increase male fitness by imposing physiological costs on female re-mating. Female kicking could, consequently, be a counterstrategy to avoid wounding or to prevent males from mating. The membranous endophallus of male Acanthoscelidesobtectus (Say, 1831) is armed with denticles. Checking if these denticles penetrate the wall of the female genital tract during copulation revealed that only the tip of the median lobe of the aedeagus is intromitted into the female genital opening during copulation. The everted endophallus extends over the full length of the ovipositor, and the spermatophore is placed in the bursa. Identification by means of light microscopy and Micro-CT of the exact relative position of male and female copulatory organs while mated confirmed that the denticles do not cause wounds in the vagina wall. Parts of the inner wall of the bursa copulatrix are covered with inward pointing denticles. Already mated females kick mounting males by vehement movements of their hind legs, thereby preventing mating. In contrast, virgin females usually accept the first male they encounter and terminate copulation by slower movements of their hind legs. The same applied to females who accepted re-mating the second day after the first copulation. Acanthoscelidesobtectus females kick males off to prevent rather than to terminate copulation. Copulatory structures as well as behaviour may have different functional roles in different beetle species, even within the Bruchinae.

SELECTION OF CITATIONS
SEARCH DETAIL
...