Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Chem ; 91(18): 11723-11730, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31424922

ABSTRACT

A low-cost second harmonic generation (SHG) microscope was constructed, and, for the first time, SHG microscopy was used for imaging agrochemical materials directly on the surface of common commercial crop leaves. The microscope uses a chromatically fixed (1560 nm) femtosecond fiber laser, a commercial 2D galvanometer mirror system, and a PCIe digital oscilloscope card, which together kept total instrument costs under $40 000 (USD), a significant decrease in cost and complexity from common systems (commercial and home-built) using tunable lasers and faster beam-scanning architectures. The figures of merit of the low-cost system still enabled a variety of measurements of agrochemical materials. Following confirmation of largely background-free SHG imaging of common crop leaves (soybean, maize, wheatgrass), SHG microscopy was used to image active ingredient crystallization after solution-phase deposition directly on the leaf surface, including at industrially relevant active ingredient concentrations (<0.05% w/w). Crystallization was also followed in real-time, with differences in crystallization time observed for different application procedures (spraying vs single droplet deposition). A strong dependency of active ingredient crystallization on the substrate was found, with an increased crystallization tendency observed on leaves vs on glass slides. Different crystal habits for the same active ingredient were also observed on different plant species. Finally, a model extended-release formulation was prepared, with a decrease in active ingredient crystallinity observed vs solution-phase deposition. These collective results demonstrate the need for making diagnostic measurements directly on the leaf surface and could help inform the next generation of pesticide products that ensure optimized agricultural output for a growing world population.


Subject(s)
Agrochemicals/chemistry , Plant Leaves/chemistry , Second Harmonic Generation Microscopy/instrumentation , Agrochemicals/pharmacology , Crystallization , Equipment Design , Glass , Griseofulvin/chemistry , Griseofulvin/pharmacology , Lasers , Limit of Detection , Pesticides/chemistry , Pesticides/pharmacology , Plant Leaves/drug effects , Rotenone/chemistry , Rotenone/pharmacology , Second Harmonic Generation Microscopy/economics , Glycine max , Triticum , Zea mays
2.
Appl Spectrosc ; 72(11): 1594-1605, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29896972

ABSTRACT

A statistical model enables auto-calibration of second harmonic generation (SHG) images for quantifying trace crystallinity within amorphous solid dispersions (ASDs) over a wide dynamic range of crystallinity. In this paper, we demonstrate particle-counting approaches for quantifying trace crystallinity, combined with analytical expressions correcting for particle overlap bias in higher crystallinity regimes to extend the continuous dynamic range of standard particle-counting algorithms through to the signal averaging regime. The reliability of the values recovered by these expressions was demonstrated with simulated data as well as experimental data obtained for an amorphous solid dispersion formulation containing evacetrapib, an Eli Lilly and Company compound. Since particle counting independently recovers the crystalline volume and the SHG intensity, the average SHG intensity per unit volume can be used as an internal calibrant for quantifying crystallinity at higher volume fractions, for which particle counting is no longer applicable.


Subject(s)
Anticholesteremic Agents/chemistry , Benzodiazepines/chemistry , Second Harmonic Generation Microscopy/methods , Algorithms , Calibration , Crystallization , Spectroscopy, Fourier Transform Infrared , Tablets , X-Ray Diffraction
3.
J Pharm Biomed Anal ; 146: 86-95, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28866472

ABSTRACT

Various techniques have been used to detect crystallization in amorphous solid dispersions (ASD). However, most of these techniques do not enable the detection of very low levels of crystallinity (<1%). The aim of the current study was to compare the sensitivity of second harmonic generation (SHG) microscopy with powder X-ray diffraction (XRPD) in detecting the presence of crystals in low drug loading amorphous solid dispersions. Amorphous solid dispersions of the poorly water soluble compounds, flutamide (FTM, 15wt.% drug loading) and ezetimibe (EZT, 30wt.% drug loading) with hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared by spray drying. To induce crystallization, samples were subsequently stored at 75% or 82% relative humidity (RH) and 40°C. Crystallization was monitored by XRPD and by SHG microscopy. Solid state nuclear magnetic resonance spectroscopy (ssNMR) was used to further investigate crystallinity in selected samples. For flutamide, crystals were detected by SHG microscopy after 8days of storage at 40°C/82% RH, whereas no evidence of crystallinity could be observed by XRPD until 26days. Correspondingly, for FTM samples stored at 40°C/75% RH, crystals were detected after 11days by SHG microscopy and after 53days by XRPD. The evolution of crystals, that is an increase in the number and size of crystalline regions, with time could be readily monitored from the SHG images, and revealed the formation of needle-shaped crystals. Further investigation with scanning electron microscopy indicated an unexpected mechanism of crystallization, whereby flutamide crystals grew as needle-shaped projections from the surface of the spray dried particles. Similarly, EZT crystals could be detected at earlier time points (15days) with SHG microscopy relative to with XRPD (60days). Thus, SHG microscopy was found to be a highly sensitive method for detecting and monitoring the evolution of crystals formed from spray dried particles, providing much earlier detection of crystallinity than XRPD under comparable run times.


Subject(s)
Ezetimibe/chemistry , Flutamide/chemistry , Methylcellulose/analogs & derivatives , Crystallization/methods , Desiccation/methods , Humidity , Methylcellulose/chemistry , Powders/chemistry , Second Harmonic Generation Microscopy/methods , Solubility , X-Ray Diffraction/methods
4.
Mol Pharm ; 14(3): 555-565, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28125239

ABSTRACT

The past decade has seen an increase in the use of nonlinear optical (NLO) techniques such as second harmonic generation, coherent antistokes Raman scattering, stimulated Raman scattering, and two-photon fluorescence for the solid-state characterization of pharmaceutical materials. These combined techniques offer several advantages (e.g., speed, selectivity, quantitation) of potential interest to the pharmaceutical community, as decreased characterization times in formulation development and testing could help decrease the time required to bring new, higher quality drugs to market. The large body of literature recently published in this field merits a review. Literature will be discussed in order of drug development, starting with applications in initial therapeutic molecule crystallization and polymorphic analysis, followed by final dosage form characterization, and ending with drug product performance testing.


Subject(s)
Pharmaceutical Preparations/chemistry , Technology, Pharmaceutical/methods , Dosage Forms , Drug Discovery/methods , Humans
5.
Biophys J ; 111(7): 1361-1374, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27705760

ABSTRACT

Nonlinear optical Stokes ellipsometric (NOSE) microscopy was demonstrated for the analysis of collagen-rich biological tissues. NOSE is based on polarization-dependent second harmonic generation imaging. NOSE was used to access the molecular-level distribution of collagen fibril orientation relative to the local fiber axis at every position within the field of view. Fibril tilt-angle distribution was investigated by combining the NOSE measurements with ab initio calculations of the predicted molecular nonlinear optical response of a single collagen triple helix. The results were compared with results obtained previously by scanning electron microscopy, nuclear magnetic resonance imaging, and electron tomography. These results were enabled by first measuring the laboratory-frame Jones nonlinear susceptibility tensor, then extending to the local-frame tensor through pixel-by-pixel corrections based on local orientation.


Subject(s)
Collagen/chemistry , Microscopy, Polarization , Optical Imaging , Algorithms , Animals , Ear , Equipment Design , Mice , Microscopy, Polarization/instrumentation , Microscopy, Polarization/methods , Models, Chemical , Nonlinear Dynamics , Optical Imaging/instrumentation , Optical Imaging/methods , Protein Structure, Secondary , Quantum Theory , Skin/chemistry , Skin/ultrastructure , Swine , Tail/chemistry , Tail/ultrastructure
6.
Anal Chem ; 88(11): 5760-8, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27092390

ABSTRACT

The use of nonlinear optical Stokes ellipsometric (NOSE) microscopy for rapid discrimination of two polymorphic forms of the small molecule d-mannitol is presented. Fast (8 MHz) polarization modulated beam-scanning microscopy and a recently developed iterative, nonlinear least-squares fitting algorithm were combined to allow discrimination of orthorhombic and monoclinic crystal structures of d-mannitol with data acquisition times of <7 s per field of view with a signal-to-noise ratio (SNR) of ∼300. Discrimination between polymorphic forms within the 99.99% confidence interval was achieved by standard statistical tests of the recovered probability density functions for the measured observables following two class linear discriminant analysis. These measurements target bottlenecks in small-volume, high-throughput solid form screening experiments for polymorph discovery in the development of emerging active pharmaceutical ingredients.


Subject(s)
Algorithms , Mannitol/analysis , Polymers/chemistry , Crystallization , Least-Squares Analysis , Microscopy, Polarization , Software
7.
Anal Chem ; 87(21): 10950-5, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26465382

ABSTRACT

Here we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect low crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.


Subject(s)
Powder Diffraction/methods , Limit of Detection
8.
Mol Pharm ; 12(7): 2378-83, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26066072

ABSTRACT

Second harmonic generation (SHG) microscopy was used to rapidly identify regions of interest for localized confocal Raman spectroscopy measurements in order to quantify crystallinity within lyophilized Abraxane powder (protein bound paclitaxel for injectable suspension). Water insoluble noncentrosymmetric crystalline particles ranging from ∼1 to 120 µm were identified by SHG, with wide variability in crystal size and frequency observed between several batches of Abraxane. By targeting the Raman analysis to these localized regions identified by SHG, the required measurement time was decreased over 2 orders of magnitude, from 8 h to 2 s. Experimental Raman spectra of SHG active domains in Abraxane were in good agreement with experimental spectra of pure crystalline paclitaxel. These collective results are consistent with up to 30% of the active ingredient being present as poorly soluble crystalline particulates in some batches of Abraxane.


Subject(s)
Paclitaxel/chemistry , Proteins/chemistry , Albumin-Bound Paclitaxel/chemistry , Chemistry, Pharmaceutical/methods , Microscopy/methods , Needles , Particle Size , Powders/chemistry , Spectrum Analysis, Raman/methods , Suspensions/chemistry
9.
Proc SPIE Int Soc Opt Eng ; 9330: 93300A, 2015 Mar 09.
Article in English | MEDLINE | ID: mdl-27041788

ABSTRACT

Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

10.
Anal Chem ; 86(16): 8448-56, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25050448

ABSTRACT

Fast 8 MHz polarization modulation coupled with analytical modeling, fast beam-scanning, and synchronous digitization (SD) have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and polarized laser transmittance imaging with image acquisition rates up to video rate. In contrast to polarimetry, in which the polarization state of the exiting beam is recorded, NOSE enables recovery of the complex-valued Jones tensor of the sample that describes all polarization-dependent observables of the measurement. Every video-rate scan produces a set of 30 images (10 for each detector with three detectors operating in parallel), each of which corresponds to a different polarization-dependent result. Linear fitting of this image set contracts it down to a set of five parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the incident beam. These parameters can in turn be used to recover the Jones tensor elements of the sample. Following validation of the approach using z-cut quartz, NOSE microscopy was performed for microcrystals of both naproxen and glucose isomerase. When weighted by the measurement time, NOSE microscopy was found to provide a substantial (>7 decades) improvement in the signal-to-noise ratio relative to our previous measurements based on the rotation of optical elements and a 3-fold improvement relative to previous single-point NOSE approaches.


Subject(s)
Microscopy, Polarization/instrumentation , Microscopy, Video/instrumentation , Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/ultrastructure , Algorithms , Crystallization , Equipment Design , Microscopy, Polarization/methods , Microscopy, Video/methods , Naproxen/chemistry
11.
Anal Chem ; 86(7): 3508-16, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24559143

ABSTRACT

A digital filter derived from linear discriminant analysis (LDA) is developed for recovering impulse responses in photon counting from a high speed photodetector (rise time of ~1 ns) and applied to remove ringing distortions from impedance mismatch in multiphoton fluorescence microscopy. Training of the digital filter was achieved by defining temporally coincident and noncoincident transients and identifying the projection within filter-space that best separated the two classes. Once trained, data analysis by digital filtering can be performed quickly. Assessment of the reliability of the approach was performed through comparisons of simulated voltage transients, in which the ground truth results were known a priori. The LDA filter was also found to recover deconvolved impulses for single photon counting from highly distorted ringing waveforms from an impedance mismatched photomultiplier tube. The LDA filter was successful in removing these ringing distortions from two-photon excited fluorescence micrographs and through data simulations was found to extend the dynamic range of photon counting by approximately 3 orders of magnitude through minimization of detector paralysis.


Subject(s)
Discriminant Analysis , Microscopy, Fluorescence/methods , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...