Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38328120

ABSTRACT

Low-intensity transcranial focused ultrasound (tFUS) has emerged as a powerful neuromodulation tool characterized by its deep penetration and precise spatial targeting to influence neural activity. Our study directed low-intensity tFUS stimulation onto a region of prefrontal cortex (the frontal eye field, or FEF) of a rhesus macaque to examine its impact on a remote site, the extrastriate visual cortex (area V4). This pair of cortical regions form a top-down modulatory circuit that has been studied extensively with electrical microstimulation. To measure the impact of tFUS stimulation, we recorded local field potentials (LFPs) and multi-unit spiking activities from a multi-electrode array implanted in the visual cortex. To deliver tFUS stimulation, we leveraged a customized 128-element random array ultrasound transducer with improved spatial targeting. We observed that tFUS stimulation in FEF produced modulation of V4 neuronal activity, either through enhancement or suppression, dependent on the pulse repetition frequency of the tFUS stimulation. Electronically steering the transcranial ultrasound focus through the targeted FEF cortical region produced changes in the level of modulation, indicating that the tFUS stimulation was spatially targeted within FEF. Modulation of V4 activity was confined to specific frequency bands, and this modulation was dependent on the presence or absence of a visual stimulus during tFUS stimulation. A control study targeting the insula produced no effect, emphasizing the region-specific nature of tFUS neuromodulation. Our findings shed light on the capacity of tFUS to modulate specific neural pathways and provide a comprehensive understanding of its potential applications for neuromodulation within brain networks.

2.
IEEE Open J Eng Med Biol ; 4: 96-101, 2023.
Article in English | MEDLINE | ID: mdl-37234191

ABSTRACT

Goal: Cerebrovascular impedance is modulated by a vasoactive autoregulative mechanism in response to changes in cerebral perfusion pressure. Characterization of impedance and the limits of autoregulation are important biomarkers of cerebral health. We developed a method to quantify impedance based on the spectral content of cerebral blood flow and volume at the cardiac frequency, measured with diffuse optical methods. Methods: In three non-human primates, we modulated cerebral perfusion pressure beyond the limits of autoregulation. Cerebral blood flow and volume were measured with diffuse correlation spectroscopy and near-infrared spectroscopy, respectively. Results: We show that impedance can be used to identify the lower and upper limits of autoregulation. Conclusions: This impedance method may be an alternative method to measure autoregulation and a way of assessing cerebral health non-invasively at the clinical bedside.

3.
bioRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36778255

ABSTRACT

Purpose: To evaluate changes in monkey optic nerve head (ONH) morphology under acutely controlled intraocular pressure (IOP) and intracranial pressure (ICP). Methods: Seven ONHs from six monkeys were imaged via optical coherence tomography while IOP and ICP were maintained at one of 16 conditions. These conditions were defined by 4 levels for each pressure: low, baseline, high and very high. Images were processed to determine scleral canal area, aspect ratio, and planarity and anterior lamina cribrosa (ALC) shape index and curvature. Linear mixed effect models were utilized to investigate the effects of IOP, ICP and their interactions on ONH morphological features. The IOP-ICP interaction model was compared with one based on translaminar pressure difference (TLPD). Results: We observed complex, eye-specific, non-linear patterns of ONH morphological changes with changes in IOP and ICP. For all ONH morphological features, linear mixed effects models demonstrated significant interactions between IOP and ICP that were unaccounted for by TLPD. Interactions indicate that the effects of IOP and ICP depend on the other pressure. The IOP-ICP interaction model was a higher quality predictor of ONH features than a TLPD model. Conclusions: In vivo modulation of IOP and ICP causes nonlinear and non-monotonic changes in monkey ONH morphology that depend on both pressures and is not accounted for by a simplistic TLPD. These results support and extend prior findings. Translational Relevance: A better understanding of ICP's influence on the effects of IOP can help inform the highly variable presentations of glaucoma and effective treatment strategies.

4.
Transl Vis Sci Technol ; 11(12): 1, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36454578

ABSTRACT

Purpose: Lamina cribrosa (LC) deformations caused by elevated intraocular pressure (IOP) are believed to contribute to glaucomatous neuropathy and have therefore been extensively studied, in many conditions, from in vivo to ex vivo. We compare acute IOP-induced global and local LC deformations immediately before (premortem) and after (postmortem) sacrifice by exsanguination. Methods: The optic nerve heads of three healthy monkeys 12 to 15 years old were imaged with spectral-domain optical coherence tomography under controlled IOP premortem and postmortem. Volume scans were acquired at baseline IOP (8-10 mm Hg) and at 15, 30, and 40 mm Hg IOP. A digital volume correlation technique was used to determine the IOP-induced three-dimensional LC deformations (strains) in regions visible premortem and postmortem. Results: Both conditions exhibited similar nonlinear relationships between IOP increases and LC deformations. Median effective and shear strains were, on average, over all eyes and pressures, smaller postmortem than premortem, by 14% and 11%, respectively (P's < 0.001). Locally, however, the differences in LC deformation between conditions were variable. Some regions were subjected premortem to triple the strains observed postmortem, and others suffered smaller deformations premortem than postmortem. Conclusions: Increasing IOP acutely caused nonlinear LC deformations with an overall smaller effect postmortem than premortem. Locally, deformations premortem and postmortem were sometimes substantially different. We suggest that the differences may be due to weakened mechanical support from the unpressurized central retinal vessels postmortem. Translational Relevance: Additional to the important premortem information, comparison with postmortem provides a unique context essential to understand the translational relevance of all postmortem biomechanics literature.


Subject(s)
Glaucoma , Optic Disk , Humans , Autopsy , Optic Disk/diagnostic imaging , Biomechanical Phenomena , Biophysics
5.
Neurophotonics ; 9(4): 045001, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36247716

ABSTRACT

Significance: Intracranial pressure (ICP) measurements are important for patient treatment but are invasive and prone to complications. Noninvasive ICP monitoring methods exist, but they suffer from poor accuracy, lack of generalizability, or high cost. Aim: We previously showed that cerebral blood flow (CBF) cardiac waveforms measured with diffuse correlation spectroscopy can be used for noninvasive ICP monitoring. Here we extend the approach to cardiac waveforms measured with near-infrared spectroscopy (NIRS). Approach: Changes in hemoglobin concentrations were measured in eight nonhuman primates, in addition to invasive ICP, arterial blood pressure, and CBF changes. Features of average cardiac waveforms in hemoglobin and CBF signals were used to train a random forest (RF) regressor. Results: The RF regressor achieves a cross-validated ICP estimation of 0.937 r 2 , 2.703 - mm Hg 2 mean squared error (MSE), and 95% confidence interval (CI) of [ - 3.064 3.160 ] mmHg on oxyhemoglobin concentration changes; 0.946 r 2 , 2.301 - mmHg 2 MSE, and 95% CI of [ - 2.841 2.866 ] mmHg on total hemoglobin concentration changes; and 0.963 r 2 , 1.688 mmHg 2 MSE, and 95% CI of [ - 2.450 2.397 ] mmHg on CBF changes. Conclusions: This study provides a proof of concept for the use of NIRS in noninvasive ICP estimation.

6.
Metabolites ; 12(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35888791

ABSTRACT

Near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS) measure cerebral hemodynamics, which in turn can be used to assess the cerebral metabolic rate of oxygen (CMRO2) and cerebral autoregulation (CA). However, current mathematical models for CMRO2 estimation make assumptions that break down for cerebral perfusion pressure (CPP)-induced changes in CA. Here, we performed preclinical experiments with controlled changes in CPP while simultaneously measuring NIRS and DCS at rest. We observed changes in arterial oxygen saturation (~10%) and arterial blood volume (~50%) with CPP, two variables often assumed to be constant in CMRO2 estimations. Hence, we propose a general mathematical model that accounts for these variations when estimating CMRO2 and validate its use for CA monitoring on our experimental data. We observed significant changes in the various oxygenation parameters, including the coupling ratio (CMRO2/blood flow) between regions of autoregulation and dysregulation. Our work provides an appropriate model and preliminary experimental evidence for the use of NIRS- and DCS-based tissue oxygenation and metabolism metrics for non-invasive diagnosis of CA health in CPP-altering neuropathologies.

8.
J Cereb Blood Flow Metab ; 42(7): 1247-1258, 2022 07.
Article in English | MEDLINE | ID: mdl-35078343

ABSTRACT

Cerebral autoregulation ensures a stable average blood supply to brain tissue across steady state cerebral perfusion pressure (CPP) levels. Neurovascular coupling, in turn, relies on sufficient blood flow to meet neuronal demands during activation. These mechanisms break down in pathologies where extreme levels of CPP can cause dysregulation in cerebral blood flow. Here, we experimentally tested the influence of changes in CPP on neurovascular coupling in a hydrocephalus-type non-human primate model (n = 3). We recorded local neural and vascular evoked responses to a checkerboard visual stimulus, non-invasively, using electroencephalography and near-infrared spectroscopy respectively. The evoked signals showed changes in various waveform features in the visual evoked potentials and the hemodynamic responses, with CPP. We further used these signals to fit for a hemodynamic response function (HRF) to describe neurovascular coupling. We estimated n = 26 distinct HRFs at a subset of CPP values ranging from 40-120 mmHg across all subjects. The HRFs, when compared to a subject dependent healthy baseline (CPP 70-90 mmHg) HRF, showed significant changes in shape with increasing CPP (ρCPP = -0.55, p-valueCPP = 0.0049). Our study provides preliminary experimental evidence on the relationship between neurovascular coupling and CPP changes, especially when beyond the limits of static autoregulation.


Subject(s)
Neurovascular Coupling , Animals , Blood Pressure/physiology , Brain/blood supply , Cerebrovascular Circulation/physiology , Evoked Potentials, Visual , Homeostasis/physiology , Humans , Neurovascular Coupling/physiology
9.
Exp Eye Res ; 213: 108809, 2021 12.
Article in English | MEDLINE | ID: mdl-34736887

ABSTRACT

Intracranial pressure (ICP) has been proposed to play an important role in the sensitivity to intraocular pressure (IOP) and susceptibility to glaucoma. However, the in vivo effects of simultaneous, controlled, acute variations in ICP and IOP have not been directly measured. We quantified the deformations of the anterior lamina cribrosa (ALC) and scleral canal at Bruch's membrane opening (BMO) under acute elevation of IOP and/or ICP. Four eyes of three adult monkeys were imaged in vivo with OCT under four pressure conditions: IOP and ICP either at baseline or elevated. The BMO and ALC were reconstructed from manual delineations. From these, we determined canal area at the BMO (BMO area), BMO aspect ratio and planarity, and ALC median depth relative to the BMO plane. To better account for the pressure effects on the imaging, we also measured ALC visibility as a percent of the BMO area. Further, ALC depths were analyzed only in regions where the ALC was visible in all pressure conditions. Bootstrap sampling was used to obtain mean estimates and confidence intervals, which were then used to test for significant effects of IOP and ICP, independently and in interaction. Response to pressure manipulation was highly individualized between eyes, with significant changes detected in a majority of the parameters. Significant interactions between ICP and IOP occurred in all measures, except ALC visibility. On average, ICP elevation expanded BMO area by 0.17 mm2 at baseline IOP, and contracted BMO area by 0.02 mm2 at high IOP. ICP elevation decreased ALC depth by 10 µm at baseline IOP, but increased depth by 7 µm at high IOP. ALC visibility decreased as ICP increased, both at baseline (-10%) and high IOP (-17%). IOP elevation expanded BMO area by 0.04 mm2 at baseline ICP, and contracted BMO area by 0.09 mm2 at high ICP. On average, IOP elevation caused the ALC to displace 3.3 µm anteriorly at baseline ICP, and 22 µm posteriorly at high ICP. ALC visibility improved as IOP increased, both at baseline (5%) and high ICP (8%). In summary, changing IOP or ICP significantly deformed both the scleral canal and the lamina of the monkey ONH, regardless of the other pressure level. There were significant interactions between the effects of IOP and those of ICP on LC depth, BMO area, aspect ratio and planarity. On most eyes, elevating both pressures by the same amount did not cancel out the effects. Altogether our results show that ICP affects sensitivity to IOP, and thus that it can potentially also affect susceptibility to glaucoma.


Subject(s)
Intracranial Hypertension/physiopathology , Intracranial Pressure/physiology , Intraocular Pressure/physiology , Ocular Hypertension/physiopathology , Optic Disk/physiopathology , Animals , Blood Pressure/physiology , Bruch Membrane/physiopathology , Disease Models, Animal , Heart Rate/physiology , Imaging, Three-Dimensional , Intracranial Hypertension/diagnostic imaging , Macaca mulatta , Ocular Hypertension/diagnostic imaging , Optic Disk/diagnostic imaging , Sclera/physiopathology , Tomography, Optical Coherence , Tonometry, Ocular
10.
PLoS One ; 16(1): e0245291, 2021.
Article in English | MEDLINE | ID: mdl-33418561

ABSTRACT

The brain's ability to maintain cerebral blood flow approximately constant despite cerebral perfusion pressure changes is known as cerebral autoregulation (CA) and is governed by vasoconstriction and vasodilation. Cerebral perfusion pressure is defined as the pressure gradient between arterial blood pressure and intracranial pressure. Measuring CA is a challenging task and has created a variety of evaluation methods, which are often categorized as static and dynamic CA assessments. Because CA is quantified as the performance of a regulatory system and no physical ground truth can be measured, conflicting results are reported. The conflict further arises from a lack of healthy volunteer data with respect to cerebral perfusion pressure measurements and the variety of diseases in which CA ability is impaired, including stroke, traumatic brain injury and hydrocephalus. To overcome these differences, we present a healthy non-human primate model in which we can control the ability to autoregulate blood flow through the type of anesthesia (isoflurane vs fentanyl). We show how three different assessment methods can be used to measure CA impairment, and how static and dynamic autoregulation compare under challenges in intracranial pressure and blood pressure. We reconstructed Lassen's curve for two groups of anesthesia, where only the fentanyl anesthetized group yielded the canonical shape. Cerebral perfusion pressure allowed for the best distinction between the fentanyl and isoflurane anesthetized groups. The autoregulatory response time to induced oscillations in intracranial pressure and blood pressure, measured as the phase lag between intracranial pressure and blood pressure, was able to determine autoregulatory impairment in agreement with static autoregulation. Static and dynamic CA both show impairment in high dose isoflurane anesthesia, while low isoflurane in combination with fentanyl anesthesia maintains CA, offering a repeatable animal model for CA studies.


Subject(s)
Analgesics, Opioid/pharmacology , Cerebrovascular Circulation/physiology , Homeostasis/drug effects , Animals , Blood Pressure/physiology , Cerebrovascular Circulation/drug effects , Fentanyl/pharmacology , Intracranial Pressure/physiology , Isoflurane/pharmacology , Models, Animal
11.
Biomed Opt Express ; 11(3): 1462-1476, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32206422

ABSTRACT

Measuring intracranial pressure (ICP) is necessary for the treatment of severe head injury but measurement systems are highly invasive and introduce risk of infection and complications. We developed a non-invasive alternative for quantifying ICP using measurements of cerebral blood flow (CBF) by diffuse correlation spectroscopy. The recorded cardiac pulsation waveform in CBF undergoes morphological changes in response to ICP changes. We used the pulse shape to train a randomized regression forest to estimate the underlying ICP and demonstrate in five non-human primates that DCS-based estimation can explain over 90% of the variance in invasively measured ICP.

12.
J Cereb Blood Flow Metab ; 40(11): 2304-2314, 2020 11.
Article in English | MEDLINE | ID: mdl-31775565

ABSTRACT

Intracranial pressure (ICP) is typically measured invasively through a sensor placed inside the brain or a needle inserted into the spinal canal, limiting the patient population on which this assessment can be performed. Currently, non-invasive methods are limited due to lack of sensitivity and thus only apply to extreme cases of increased ICP, instead of use in general clinical practice. We demonstrate a novel application for near-infrared spectroscopy (NIRS) to accurately estimate ICP changes over time. Using a non-human primate (Rhesus Macaque) model, we collected optical data while we induced ICP oscillations at multiple ICP levels obtained by manipulating the height of a fluid column connected via a catheter to the lateral ventricle. Hemodynamic responses to ICP changes were measured at the occipital pole and compared to changes detected by a conventional intraparenchymal ICP probe. We demonstrate that hemoglobin concentrations are highly correlated with induced ICP oscillations and that this response is frequency dependent. We translated the NIRS data into non-invasive ICP measurements via a fitted non-parametric transfer function, demonstrating a match in both magnitude and time alignment with an invasively measured reference. Our results demonstrate that NIRS has the potential for non-invasive ICP monitoring.


Subject(s)
Intracranial Pressure , Spectroscopy, Near-Infrared/methods , Animals , Biomarkers/blood , Cerebrovascular Circulation , Hemodynamics , Intracranial Hypertension/diagnosis , Intracranial Hypertension/etiology , Macaca mulatta , Male , Models, Animal , Monitoring, Physiologic , Signal-To-Noise Ratio , Spectroscopy, Near-Infrared/standards
13.
Invest Ophthalmol Vis Sci ; 59(6): 2564-2575, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29847664

ABSTRACT

Purpose: To introduce an experimental approach for direct comparison of the primate optic nerve head (ONH) before and after death by exsanguination. Method: The ONHs of four eyes from three monkeys were imaged with spectral-domain optical coherence tomography (OCT) before and after exsanguination under controlled IOP. ONH structures, including the Bruch membrane (BM), BM opening, inner limiting membrane (ILM), and anterior lamina cribrosa (ALC) were delineated on 18 virtual radial sections per OCT scan. Thirteen parameters were analyzed: scleral canal at BM opening (area, planarity, and aspect ratio), ILM depth, BM depth; ALC (depth, shape index, and curvedness), and ALC visibility (globally, superior, inferior, nasal, and temporal quadrants). Results: All four ALC quadrants had a statistically significant improvement in visibility after exsanguination (overall P < 0.001). ALC visibility increased by 35% globally and by 36%, 37%, 14%, and 4% in the superior, inferior, nasal, and temporal quadrants, respectively. ALC increased 4.1%, 1.9%, and 0.1% in curvedness, shape index, and depth, respectively. Scleral canals increased 7.2%, 25.2%, and 1.1% in area, planarity, and aspect ratio, respectively. ILM and BM depths averaged -7.5% and -55.2% decreases in depth, respectively. Most, but not all, changes were beyond the repeatability range. Conclusions: Exsanguination allows for improved lamina characterization, especially in regions typically blocked by shadowing in OCT. The results also demonstrate changes in ONH morphology due to the loss of blood pressure. Future research will be needed to determine whether there are differences in ONH biomechanics before and after exsanguination and what those differences would imply.


Subject(s)
Exsanguination/complications , Optic Disk/pathology , Optic Nerve Diseases/etiology , Animals , Imaging, Three-Dimensional , Intraocular Pressure , Macaca mulatta , Optic Disk/diagnostic imaging , Optic Nerve Diseases/diagnostic imaging , Tomography, Optical Coherence/methods
14.
PLoS One ; 12(11): e0188302, 2017.
Article in English | MEDLINE | ID: mdl-29161320

ABSTRACT

There is increasing clinical evidence that the eye is not only affected by intraocular pressure (IOP), but also by intracranial pressure (ICP). Both pressures meet at the optic nerve head of the eye, specifically the lamina cribrosa (LC). The LC is a collagenous meshwork through which all retinal ganglion cell axons pass on their way to the brain. Distortion of the LC causes a biological cascade leading to neuropathy and impaired vision in situations such as glaucoma and idiopathic intracranial hypertension. While the effect of IOP on the LC has been studied extensively, the coupled effects of IOP and ICP on the LC remain poorly understood. We investigated in-vivo the effects of IOP and ICP, controlled via cannulation of the eye and lateral ventricle in the brain, on the LC microstructure of anesthetized rhesus monkeys eyes using the Bioptigen spectral-domain optical coherence tomography (OCT) device (Research Triangle, NC). The animals were imaged with their head upright and the rest of their body lying prone on a surgical table. The LC was imaged at a variety of IOP/ICP combinations, and microstructural parameters, such as the thickness of the LC collagenous beams and diameter of the pores were analyzed. LC microstructure was confirmed by histology. We determined that LC microstructure deformed in response to both IOP and ICP changes, with significant interaction between the two. These findings emphasize the importance of considering both IOP and ICP when assessing optic nerve health.


Subject(s)
Glaucoma/physiopathology , Optic Disk/ultrastructure , Optic Nerve/ultrastructure , Retinal Ganglion Cells/ultrastructure , Animals , Humans , Intracranial Pressure/physiology , Intraocular Pressure/physiology , Macaca mulatta , Optic Disk/physiopathology , Optic Nerve/physiopathology , Retinal Ganglion Cells/pathology , Tonometry, Ocular
15.
Sci Rep ; 7(1): 14070, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070799

ABSTRACT

Stem cell-derived organoids and other 3D microtissues offer enormous potential as models for drug screening, disease modeling, and regenerative medicine. Formation of stem/progenitor cell aggregates is common in biomanufacturing processes and critical to many organoid approaches. However, reproducibility of current protocols is limited by reliance on poorly controlled processes (e.g., spontaneous aggregation). Little is known about the effects of aggregation parameters on cell behavior, which may have implications for the production of cell aggregates and organoids. Here we introduce a bioengineered platform of labile substrate arrays that enable simple, scalable generation of cell aggregates via a controllable 2D-to-3D "self-assembly". As a proof-of-concept, we show that labile substrates generate size- and shape-controlled embryoid bodies (EBs) and can be easily modified to control EB self-assembly kinetics. We show that aggregation method instructs EB lineage bias, with faster aggregation promoting pluripotency loss and ectoderm, and slower aggregation favoring mesoderm and endoderm. We also find that aggregation kinetics of EBs markedly influence EB structure, with slower kinetics resulting in increased EB porosity and growth factor signaling. Our findings suggest that controlling internal structure of cell aggregates by modifying aggregation kinetics is a potential strategy for improving 3D microtissue models for research and translational applications.


Subject(s)
Cell Differentiation , Cell Lineage , Embryoid Bodies/cytology , Human Embryonic Stem Cells/cytology , Organoids/cytology , Pluripotent Stem Cells/cytology , Cell Culture Techniques , Cells, Cultured , Humans , Signal Transduction
16.
Curr Opin Biotechnol ; 40: 164-169, 2016 08.
Article in English | MEDLINE | ID: mdl-27314835

ABSTRACT

The promise of growing tissues to replace or improve the function of failing ones, a practice often referred to as regenerative medicine, has been driven in recent years by the development of stem cells and cell lines. Stem cells are typically cultured outside the body to increase cell number or differentiate the cells into mature cell types. In order to maximize the regenerative potential of these cells, there is a need to understand cell-material interactions that direct cell behavior and cell-material dynamics. Most synthetic surfaces used for growth and differentiation of cells in the lab are impractical and cost prohibitive in clinical labs. This review focuses on the modification of low cost polymer substrates that are already widely used for cell culture so that they may be used to control and understand cell-material interactions. In addition, we discuss the ability of cells to exert dynamic control over the microenvironment leading to a more complex, less controlled surface.


Subject(s)
Cell Differentiation , Polymers/chemistry , Regenerative Medicine/methods , Stem Cells/cytology , Animals , Cell Communication , Cell Culture Techniques , Humans , Polymers/metabolism , Stem Cells/metabolism
17.
Biomacromolecules ; 17(3): 1040-7, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26835552

ABSTRACT

Conjugation of biomolecules for stable presentation is an essential step toward reliable chemically defined platforms for cell culture studies. In this work, we describe the formation of a stable and site-specific amide bond via the coupling of a cysteine terminated peptide at low concentration to an azlactone containing copolymer coating. A copolymer of polyethylene glycol methyl ether methacrylate-ran-vinyl azlactone-ran-glycidyl methacrylate P(PEGMEMA-r-VDM-r-GMA) was used to form a thin coating (20-30 nm) on silicon and polycarbonate substrates. The formation and stability of coating-peptide bonds for peptides containing free thiols and amines were quantified by X-ray photoelectron spectroscopy (XPS) after exposure to cell culture conditions. Peptides containing a thiol as the only nucleophile coupled via a thioester bond; however, the bond was labile under cell culture conditions and almost all the bound peptides were displaced from the surface over a period of 2 days. Coupling with N-terminal primary amine peptides resulted in the formation of an amide bond with low efficiency (<20%). In contrast, peptides containing an N-terminal cysteine, which contain both nucleophiles (free thiol and amine) in close proximity, bound with 67% efficiency under neutral pH, and were stable under the same conditions for 2 weeks. Control studies confirm that the stable amide formation was a result of an intramolecular rearrangement through a N-acyl intermediate that resembles native chemical ligation. Through a combination of XPS and cell culture studies, we show that the cysteine terminated peptides undergo a native chemical ligation process at low peptide concentration in aqueous media, short reaction time, and at room temperature resulting in the stable presentation of peptides beyond 2 weeks for cell culture studies.


Subject(s)
Coated Materials, Biocompatible/chemical synthesis , Peptides/chemistry , Cell Line , Coated Materials, Biocompatible/pharmacology , Cysteine/chemistry , Humans , Lactones/chemistry , Mesenchymal Stem Cells/drug effects , Polycarboxylate Cement/chemistry , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/pharmacology , Polymethacrylic Acids/chemical synthesis , Polymethacrylic Acids/pharmacology , Silicones/chemistry
18.
Acta Biomater ; 34: 93-103, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26386315

ABSTRACT

Here, we have developed a novel method for forming hydrogel arrays using surfaces patterned with differential wettability. Our method for benchtop array formation is suitable for enhanced-throughput, combinatorial screening of biochemical and biophysical cues from chemically defined cell culture substrates. We demonstrated the ability to generate these arrays without the need for liquid handling systems and screened the combinatorial effects of substrate stiffness and immobilized cell adhesion peptide concentration on human mesenchymal stem cell (hMSC) behavior during short-term 2-dimensional cell culture. Regardless of substrate stiffness, hMSC initial cell attachment, spreading, and proliferation were linearly correlated with immobilized CRGDS peptide concentration. Increasing substrate stiffness also resulted in increased hMSC initial cell attachment, spreading, and proliferation; however, examination of the combinatorial effects of CRGDS peptide concentration and substrate stiffness revealed potential interplay between these distinct substrate signals. Maximal hMSC proliferation seen on substrates with either high stiffness or high CRGDS peptide concentration suggests that some baseline level of cytoskeletal tension was required for hMSC proliferation on hydrogel substrates and that multiple substrate signals could be engineered to work in synergy to promote mechanosensing and regulate cell behavior. STATEMENT OF SIGNIFICANCE: Our novel array formation method using surfaces patterned with differential wettability offers the advantages of benchtop array formation for 2-dimensional cell cultures and enhanced-throughput screening without the need for liquid handling systems. Hydrogel arrays formed via our method are suitable for screening the influence of chemical (e.g. cell adhesive ligands) and physical (stiffness, size, shape, and thickness) substrate properties on stem cell behavior. The arrays are also fully compatible with commercially available micro-array add-on systems, which allows for simultaneous control of the insoluble and soluble cell culture environment. This study used hydrogel arrays to demonstrate that synergy between cell adhesion and mechanosensing can be used to regulate hMSC behavior.


Subject(s)
Combinatorial Chemistry Techniques/methods , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Mesenchymal Stem Cells/cytology , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Immobilized/cytology , Cells, Immobilized/drug effects , Humans , Ligands , Mesenchymal Stem Cells/drug effects , Peptides/pharmacology , Receptors, Cell Surface/metabolism , Wettability
19.
ACS Nano ; 9(10): 10203-13, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26348205

ABSTRACT

Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.

20.
Adv Healthc Mater ; 4(10): 1555-64, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25995154

ABSTRACT

Human mesenchymal stem cells (hMSCs) are a widely available and clinically relevant cell type with a host of applications in regenerative medicine. Current clinical expansion methods can lead to selective changes in hMSC phenotype potentially resulting from relatively undefined cell culture surfaces. Chemically defined synthetic surfaces can aid in understanding the influence of cell-material interactions on stem cell behavior. Here, a thin copolymer coating for hMSC culture on plastic substrates is developed. The random copolymer is synthesized by living free radical polymerization and characterized in solution before application to the substrate, ensuring a homogeneous coating and limiting the sample-to-sample variations. The ability to coat multiple substrate types and cover large surface areas is reported. Arg-Gly-Asp-containing peptides are incorporated into the coating under aqueous conditions via their lysine or cysteine side chains, resulting in amide and thioester linkages, respectively. Stability studies show amide linkages to be stable and thioester linkages to be labile under standard serum-containing culture conditions. In addition, chemically defined passaging of hMSCs using only ethylenediaminetetraacetic acid on polystyrene dishes is shown. After passage, the hMSCs can be seeded back onto the same plate, indicating potential reusability of the coating.


Subject(s)
Mesenchymal Stem Cells/cytology , Polyethylene Glycols/chemistry , Cell Adhesion , Cell Proliferation , Cells, Cultured , Human Embryonic Stem Cells/cytology , Humans , Mesenchymal Stem Cells/metabolism , Oligopeptides/chemistry , Photoelectron Spectroscopy , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...