Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neural Circuits ; 17: 1210057, 2023.
Article in English | MEDLINE | ID: mdl-37521334

ABSTRACT

The auditory cortex (AC) modulates the activity of upstream pathways in the auditory brainstem via descending (corticofugal) projections. This feedback system plays an important role in the plasticity of the auditory system by shaping response properties of neurons in many subcortical nuclei. The majority of layer (L) 5 corticofugal neurons project to the inferior colliculus (IC). This corticocollicular (CC) pathway is involved in processing of complex sounds, auditory-related learning, and defense behavior. Partly due to their location in deep cortical layers, CC neuron population activity patterns within neuronal AC ensembles remain poorly understood. We employed two-photon imaging to record the activity of hundreds of L5 neurons in anesthetized as well as awake animals. CC neurons are broader tuned than other L5 pyramidal neurons and display weaker topographic order in core AC subfields. Network activity analyses revealed stronger clusters of CC neurons compared to non-CC neurons, which respond more reliable and integrate information over larger distances. However, results obtained from secondary auditory cortex (A2) differed considerably. Here CC neurons displayed similar or higher topography, depending on the subset of neurons analyzed. Furthermore, specifically in A2, CC activity clusters formed in response to complex sounds were spatially more restricted compared to other L5 neurons. Our findings indicate distinct network mechanism of CC neurons in analyzing sound properties with pronounced subfield differences, demonstrating that the topography of sound-evoked responses within AC is neuron-type dependent.


Subject(s)
Auditory Cortex , Inferior Colliculi , Animals , Auditory Cortex/physiology , Auditory Pathways/physiology , Inferior Colliculi/physiology , Neurons/physiology , Pyramidal Cells , Acoustic Stimulation
2.
Biol Chem ; 404(6): 607-617, 2023 05 25.
Article in English | MEDLINE | ID: mdl-36342370

ABSTRACT

The α2δ3 auxiliary subunit of voltage-activated calcium channels is required for normal synaptic transmission and precise temporal processing of sounds in the auditory brainstem. In mice its loss additionally leads to an inability to distinguish amplitude-modulated tones. Furthermore, loss of function of α2δ3 has been associated with autism spectrum disorder in humans. To investigate possible alterations of network activity in the higher-order auditory system in α2δ3 knockout mice, we analyzed neuronal activity patterns and topography of frequency tuning within networks of the auditory cortex (AC) using two-photon Ca2+ imaging. Compared to wild-type mice we found distinct subfield-specific alterations in the primary auditory cortex, expressed in overall lower correlations between the network activity patterns in response to different sounds as well as lower reliability of these patterns upon repetitions of the same sound. Higher AC subfields did not display these alterations but showed a higher amount of well-tuned neurons along with lower local heterogeneity of the neurons' frequency tuning. Our results provide new insight into AC network activity alterations in an autism spectrum disorder-associated mouse model.


Subject(s)
Auditory Cortex , Autism Spectrum Disorder , Animals , Humans , Mice , Auditory Cortex/physiology , Autism Spectrum Disorder/genetics , Neurons , Reproducibility of Results , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...