Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 138(3): 035102, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23343305

ABSTRACT

DNA microarrays are a potentially disruptive technology in the medical field, but their use in such settings is limited by poor reliability. Microarrays work on the principle of hybridization and can only be as reliable as this process is robust, yet little is known at the molecular level about how the surface affects the hybridization process. This work uses advanced molecular simulation techniques and an experimentally parameterized coarse-grain model to determine the mechanism by which hybridization occurs on surfaces. The results show that hybridization proceeds through a mechanism where the untethered (target) strand often flips orientation. For evenly lengthed strands, the surface stabilizes hybridization (compared to the bulk system) by reducing the barriers involved in the flipping event. For unevenly lengthed strands, the surface destabilizes hybridization compared to the bulk, but the degree of destabilization is dependent on the location of the matching sequence. Taken as a whole, the results offer an unprecedented view into the hybridization process on surfaces and provide some insights as to the poor reproducibility exhibited by microarrays.


Subject(s)
DNA/chemistry , Oligonucleotide Array Sequence Analysis , Molecular Dynamics Simulation , Nucleic Acid Hybridization , Surface Properties
2.
J Chem Phys ; 134(20): 205105, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21639485

ABSTRACT

Hybridization of single-stranded DNA (ssDNA) targets to surface-tethered ssDNA probes was simulated using an advanced coarse-grain model to identify key factors that influence the accuracy of DNA microarrays. Comparing behavior in the bulk and on the surface showed, contrary to previous assumptions, that hybridization on surfaces is more thermodynamically favorable than in the bulk. In addition, the effects of stretching or compressing the probe strand were investigated as a model system to test the hypothesis that improving surface hybridization will improve microarray performance. The results in this regard indicate that selectivity can be increased by reducing overall sensitivity by a small degree. Taken as a whole, the results suggest that current methods to enhance microarray performance by seeking to improve hybridization on the surface may not yield the desired outcomes.


Subject(s)
DNA, Single-Stranded/chemistry , Thermodynamics , Humans , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Surface Properties
3.
J Chem Phys ; 131(23): 235101, 2009 Dec 21.
Article in English | MEDLINE | ID: mdl-20025349

ABSTRACT

Two different classes of experimental techniques exist by which protein folding mechanisms are ascertained. The first class, of which circular dichroism is an example, probes thermally-induced folding. The second class, which includes atomic force microscopy and optical tweezers, measures mechanically-induced folding. In this article, we investigate if proteins fold/unfold via the same mechanisms both thermally and mechanically. We do so using Ribonuclease H, a protein that has been shown to fold through a three-state mechanism using both types of experimental techniques. A detailed, molecular-level description of the states involved in thermal and mechanical folding shows that mechanisms for both types are globally similar, but small difference exist in the most unfolded conformations. Comparison to previous work suggests a universal folding behavior for proteins with a core helical bundle.


Subject(s)
Models, Theoretical , Protein Folding , Ribonuclease H/chemistry , Mechanical Phenomena , Protein Conformation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...