Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Sci Sleep ; 15: 677-690, 2023.
Article in English | MEDLINE | ID: mdl-37621720

ABSTRACT

Purpose: Differential diagnosis of central disorders of hypersomnolence remains challenging, particularly between idiopathic (IH) and nonorganic hypersomnia (NOH). We hypothesized that eyelid closure behavior in the maintenance of wakefulness test (MWT) could be a valuable biomarker. Patients and Methods: MWT recordings of patients with IH, NOH, narcolepsy-cataplexy (NC), and healthy sleep-deprived controls (H) were retrospectively analyzed (15 individuals per group). For each MWT trial, visual scoring of face videography for partial (50-80%) and full eyelid closure (≥80%) was performed from "lights off" to the first microsleep episode (≥3 s). Results: In all groups, the frequency and cumulative duration of periods with partial and full eyelid closure gradually increased toward the first microsleep episode. On the group level, significant differences occurred for the latency to the first microsleep episode (IH 21 min (18-33), NOH 23 min (17-35), NC 11 min (7-19), H 10 min (6-25); p = 0.009), the ratio between partial and full eyelid closure duration (IH 2.2 (0.9-3.1), NOH 0.5 (0-1.2), NC 2.8 (1.1-5), H 0.7 (0.4-3.3); p = 0.004), and the difference between full and partial eyelid closure duration in the five minutes prior to the first microsleep episode (∆full - partial eyelid closure duration: IH -16 s (-35 to 28); NOH 46 s (9-82); NC -6 s (-26 to 5); H 10 s (-4 to 18); p = 0.007). IH and NOH significantly differed comparing the ratio between partial and full eyelid closure (p = 0.005) and the difference between ∆full - partial eyelid closure duration in the five minutes prior to the first microsleep episode (p = 0.006). Conclusion: In the MWT, eyelid closure behavior (∆full - partial) in the period prior to the first microsleep episode could be of value for discriminating NOH from other etiologies of excessive daytime sleepiness, particularly IH.

2.
Sleep ; 45(3)2022 03 14.
Article in English | MEDLINE | ID: mdl-35038747

ABSTRACT

STUDY OBJECTIVES: This retrospective cross-sectional observational study explored the diagnostic value of selected sleep and vigilance tests (SVT) beyond the multiple sleep latency test to differentiate between various central disorders of hypersomnolence (CDH) and fatigue syndromes. METHODS: Data from patients who underwent the multiple sleep latency test and at least one additional SVT were extracted from the Bern sleep database (1997-2018). One thousand three hundred fifty-two patients with a CDH (106 narcolepsy type 1, 90 narcolepsy type 2, 119 idiopathic hypersomnia, 192 nonorganic hypersomnia, 205 insufficient sleep syndrome), fatigue syndromes (n = 183), and a subgroup of patients with sleep apnea (n = 457) were analyzed. Classification based on SVT parameters was compared with the final clinical diagnosis serving as a reference. RESULTS: An overall model predicted the final diagnosis in 49.5% of patients. However, for the pairwise differentiation of two clinically suspected diagnoses, many SVT parameters showed a sensitivity and specificity above 70%. While the overall discrimination power of the multiple sleep latency test was slightly better than the one of the maintenance of wakefulness test, the latter differentiated best between narcolepsy and idiopathic hypersomnia with prolonged sleep need. Disproportionally poor results in reaction tests (e.g. steer clear test), despite comparable or lower sleepiness levels (SLAT, WLAT), were valuable for differentiating nonorganic hypersomnia from idiopathic hypersomnia/sleep insufficiency syndrome. CONCLUSION: This study demonstrates how the combination of a careful clinical assessment and a selection of SVTs can improve the differentiation of CDH, whereas it was not possible to establish an overall prediction model based on SVTs alone.


Subject(s)
Disorders of Excessive Somnolence , Narcolepsy , Cross-Sectional Studies , Disorders of Excessive Somnolence/diagnosis , Humans , Narcolepsy/diagnosis , Retrospective Studies , Sleep , Wakefulness
3.
Neurol Res Pract ; 3(1): 15, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33691803

ABSTRACT

Insomnia is defined as difficulties of initiating and maintaining sleep, early awakening and poor subjective sleep quality despite adequate opportunity and circumstances for sleep with impairment of daytime performance. These components of insomnia - namely persistent sleep difficulties despite of adequate sleep opportunity resulting in daytime dysfunction - appear secondary or co-morbid to neurological diseases. Comorbid insomnia originates from neurodegenerative, inflammatory, traumatic or ischemic changes in sleep regulating brainstem and hypothalamic nuclei with consecutive changes of neurotransmitters. Symptoms of neurological disorders (i.e motor deficits), co-morbidities (i.e. pain, depression, anxiety) and some disease-specific pharmaceuticals may cause insomnia and/or other sleep problems.This guideline focuses on insomnias in headaches, neurodegenerative movement disorders, multiple sclerosis, traumatic brain injury, epilepsies, stroke, neuromuscular disease and dementia.The most important new recommendations are: Cognitive behavioral therapy (CBTi) is recommended to treat acute and chronic insomnia in headache patients. Insomnia is one of the most frequent sleep complaints in neurodegenerative movement disorders. Patients may benefit from CBTi, antidepressants (trazodone, doxepin), melatonin and gaba-agonists. Insomnia is a frequent precursor of MS symptoms by up to 10 years. CBTi is recommended in patients with MS, traumatic brain injury and. Melatonin may improve insomnia symptoms in children with epilepsies. Patients with insomnia after stroke can be treated with benzodiazepine receptor agonists and sedating antidepressants. For patients with dementia suffering from insomnia trazodone, light therapy and physical exercise are recommended.

4.
Neuropsychobiology ; 70(3): 189-94, 2014.
Article in English | MEDLINE | ID: mdl-25377356

ABSTRACT

BACKGROUND/AIMS: Clinical differentiation between organic hypersomnia and non-organic hypersomnia (NOH) is challenging. We aimed to determine the diagnostic value of sleepiness and performance tests in patients with excessive daytime sleepiness (EDS) of organic and non-organic origin. METHODS: We conducted a retrospective comparison of the multiple sleep latency test (MSLT), pupillography, and the Steer Clear performance test in three patient groups complaining of EDS: 19 patients with NOH, 23 patients with narcolepsy (NAR), and 46 patients with mild to moderate obstructive sleep apnoea syndrome (OSAS). RESULTS: As required by the inclusion criteria, all patients had Epworth Sleepiness Scale (ESS) scores >10. The mean sleep latency in the MSLT indicated mild objective sleepiness in NOH (8.1 ± 4.0 min) and OSAS (7.2 ± 4.1 min), but more severe sleepiness in NAR (2.5 ± 2.0 min). The difference between NAR and the other two groups was significant; the difference between NOH and OSAS was not. In the Steer Clear performance test, NOH patients performed worst (error rate = 10.4%) followed by NAR (8.0%) and OSAS patients (5.9%; p = 0.008). The difference between OSAS and the other two groups was significant, but not between NOH and NAR. The pupillary unrest index was found to be highest in NAR (11.5) followed by NOH (9.2) and OSAS (7.4; n.s.). CONCLUSION: A high error rate in the Steer Clear performance test along with mild sleepiness in an objective sleepiness test (MSLT) in a patient with subjective sleepiness (ESS) is suggestive of NOH. This disproportionately high error rate in NOH may be caused by factors unrelated to sleep pressure, such as anergia, reduced attention and motivation affecting performance, but not conventional sleepiness measurements.


Subject(s)
Disorders of Excessive Somnolence/diagnosis , Narcolepsy/diagnosis , Sleep Apnea, Obstructive/diagnosis , Adult , Female , Humans , Male , Middle Aged , Pilot Projects , Polysomnography , Reproducibility of Results , Retrospective Studies , Severity of Illness Index , Sleep
5.
J Anxiety Disord ; 21(3): 353-66, 2007.
Article in English | MEDLINE | ID: mdl-16814514

ABSTRACT

Predicting the behavior of phobic patients in a confrontational situation is challenging. While avoidance as a major clinical component of phobias suggests that patients orient away from threat, findings based on cognitive paradigms indicate an attentional bias towards threat. Here we present eye movement data from 21 spider phobics and 21 control subjects, based on 3 basic oculomotor tasks and a visual exploration task that included close-up views of spiders. Relative to the control group, patients showed accelerated reflexive saccades in one of the basic oculomotor tasks, while the fear-relevant exploration task evoked a general slowing in their scanning behavior and pronounced oculomotor avoidance. However, this avoidance strongly varied within the patient group and was not associated with the scores from spider avoidance-sensitive questionnaire scales. We suggest that variation of oculomotor avoidance between phobics reflects different strategies of how they cope with threat in confrontational situations.


Subject(s)
Phobic Disorders/diagnosis , Phobic Disorders/psychology , Spiders , Adult , Animals , Attention , Cognition , Diagnostic and Statistical Manual of Mental Disorders , Escape Reaction , Eye Movements , Fixation, Ocular , Humans , Severity of Illness Index , Surveys and Questionnaires , Time Factors , Visual Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...