Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33127424

ABSTRACT

Gene-environment interaction (GxE) determines the vulnerability of an individual to a spectrum of stress-related neuropsychiatric disorders. Increased impulsivity, excessive aggression, and other behavioural characteristics are associated with variants within the tryptophan hydroxylase-2 (Tph2) gene, a key enzyme in brain serotonin synthesis. This phenotype is recapitulated in naïve mice with complete, but not with partial Tph2 inactivation. Tph2 haploinsufficiency in animals reflects allelic variation of Tph2 facilitating the elucidation of respective GxE mechanisms. Recently, we showed excessive aggression and altered serotonin brain metabolism in heterozygous Tph2-deficient male mice (Tph2+/-) after predator stress exposure. Here, we sought to extend these studies by investigating aggressive and anxiety-like behaviours, sociability, and the brain metabolism of dopamine and noradrenaline. Separately, Tph2+/- mice were examined for exploration activity in a novel environment and for the potentiation of helplessness in the modified swim test (ModFST). Predation stress procedure increased measures of aggression, dominancy, and suppressed sociability in Tph2+/- mice, which was the opposite of that observed in control mice. Anxiety-like behaviour was unaltered in the mutants and elevated in controls. Tph2+/- mice exposed to environmental novelty or to the ModFST exhibited increased novelty exploration and no increase in floating behaviour compared to controls, which is suggestive of resilience to stress and despair. High-performance liquid chromatography (HPLC) revealed significant genotype-dependent differences in the metabolism of dopamine, and norepinephrine within the brain tissue. In conclusion, environmentally challenged Tph2+/- mice exhibit behaviours that resemble the behaviour of non-stressed null mutants, which reveals how GxE interaction studies can unmask latent genetically determined predispositions.


Subject(s)
Brain/metabolism , Dopamine/metabolism , Norepinephrine/metabolism , Social Behavior , Stress, Psychological/metabolism , Tryptophan Hydroxylase/metabolism , Animals , Dopamine/genetics , Male , Mice , Mice, Transgenic , Norepinephrine/genetics , Rats , Rats, Wistar , Stress, Psychological/genetics , Stress, Psychological/psychology , Tryptophan Hydroxylase/genetics
2.
Front Neurosci ; 14: 24, 2020.
Article in English | MEDLINE | ID: mdl-32132889

ABSTRACT

Reduced function of the serotonin transporter (SERT) is associated with increased susceptibility to anxiety and depression and with type-2 diabetes, which is especially true in older women. Preference for a "Western diet" (WD), enriched with saturated fat, cholesterol, and sugars, may aggravate these conditions. In previous studies, decreased glucose tolerance, central and peripheral inflammation, dyslipidemia, emotional, cognitive, and social abnormalities were reported in WD-fed young female mice. We investigated the metabolic, molecular, and behavioral changes associated with a 3-week-long dietary regime of either the WD or control diet in 12-month-old female mice with three different Sert genotypes: homozygous (Slc6a4) gene knockout (Sert -/-: KO), heterozygous (Sert +/-: HET), or wild-type mice (Sert +/+: WT). In the WT-WD and KO-WD groups, but not in HET-WD-fed mice, most of changes induced by the WD paralleled those found in the younger mice, including brain overexpression of inflammatory marker Toll-like receptor 4 (Tlr4) and impaired hippocampus-dependent performance in the marble test. However, the 12-month-old female mice became obese. Control diet KO mice exhibited impaired hippocampal-dependent behaviors, increased brain expression of the serotonin receptors Htr2c and Htr1b, as well as increased Tlr4 and mitochondrial regulator, peroxisome proliferator-activated receptor gamma-coactivator-1a (Ppargc1a). Paradoxically, these, and other changes, were reversed in KO-WD mutants, suggesting a complex interplay between Sert deficiency and metabolic factors as well as potential compensatory molecular mechanisms that might be disrupted by the WD exposure. Most, but not all, of the changes in gene expression in the brain and liver of KO mice were not exhibited by the HET mice fed with either diet. Some of the WD-induced changes were similar in the KO-WD and HET-WD-fed mice, but the latter displayed a "rescued" phenotype in terms of diet-induced abnormalities in glucose tolerance, neuroinflammation, and hippocampus-dependent performance. Thus, complete versus partial Sert inactivation in aged mice results in distinct metabolic, molecular, and behavioral consequences in response to the WD. Our findings show that Sert +/- mice are resilient to certain environmental challenges and support the concept of heterosis as evolutionary adaptive mechanism.

3.
Front Physiol ; 9: 1378, 2018.
Article in English | MEDLINE | ID: mdl-30337880

ABSTRACT

Fractal phenomena can be found in numerous scientific areas including neuroscience. Fractals are structures, in which the whole has the same shape as its parts. A specific structure known as pink noise (also called fractal or 1/f noise) is one key fractal manifestation, exhibits both stability and adaptability, and can be addressed via the Hurst exponent (H). FMRI studies using H on regional fMRI time courses used fractality as an important characteristic to unravel neural networks from artificial noise. In this fMRI-study, we examined 103 healthy male students at rest and while performing the 5-choice serial reaction time task. We addressed fractality in a network associated with waiting impulsivity using the adaptive fractal analysis (AFA) approach to determine H. We revealed the fractal nature of the impulsivity network. Furthermore, fractality was influenced by individual impulsivity in terms of decreasing fractality with higher impulsivity in regions of top-down control (left middle frontal gyrus) as well as reward processing (nucleus accumbens and anterior cingulate cortex). We conclude that fractality as determined via H is a promising marker to quantify deviations in network functions at an early stage and, thus, to be able to inform preventive interventions before the manifestation of a disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...