Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 50 Pt 2: 873-881, 2000 Mar.
Article in English | MEDLINE | ID: mdl-10758899

ABSTRACT

Two anaerobic acid-tolerant bacteria, CK58T and CK74T, were isolated from acidic beech litter and acidic peat-bog soil, respectively. Both bacteria were spore-forming, motile rods with peritrichous flagella. The capacity to sporulate decreased with prolonged cultivation. Cells of CK58T formed chains or aggregates and were linked by a connecting filament that consisted of a core and a surrounding sheath. Cellobiose, glucose, xylose, arabinose, maltose, mannose and salicin supported growth of CK58T. These substrates, as well as mannitol, lactose, sucrose, glycerol, melezitose, raffinose and rhamnose, supported growth of CK74T. Sorbitol, trehalose, H2/CO2, CO/CO2, vanillate, Casamino acids, peptone, and various purines and pyrimidines did not support the growth of either organism. Growth of CK58T and CK74T on glucose yielded butyrate, lactate, acetate, formate, H2 and CO2 as end products. Growth of CK58T and CK74T was observed at pH 3.7-7.1 and 3.6-6.9, respectively. CK58T and CK74T grew in nitrogen-free medium at pH 3.7 under an N2 atmosphere and reduced acetylene at rates approximating 1 nmol min-1 (mg protein)-1. CK58T and CK74T did not contain carbon monoxide dehydrogenase or cytochromes, produce methane, or dissimilate nitrate or sulfate. Thus, CK58T and CK74T were characterized as nonacetogenic, N2-fixing, fermentative chemo-organotrophs. The G + C contents of CK58T and CK74T were 31.4 and 30.7 mol%, respectively. CK58T and CK74T were phylogenetically most closely related to Clostridium pasteurianum. The 16S rRNA gene sequence similarity values of CK58T and CK74T to C. pasteurianum and each other did not exceed 96.5%, and it is proposed that strains CK58T and CK74T be named Clostridium akagii CK58T (DSM 12554T) and Clostridium acidisoli CK74T (DSM 12555T), respectively. These results suggest that previously uncharacterized clostridial species reside and might fix N2 in the annoxic microzones of acidic forest soil and litter.


Subject(s)
Clostridium/classification , Clostridium/physiology , Nitrogen Fixation , Soil Microbiology , Anaerobiosis , Clostridium/isolation & purification , Clostridium/ultrastructure , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Genes, rRNA , Hydrogen-Ion Concentration , Microscopy, Electron , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Trees
2.
Appl Environ Microbiol ; 65(8): 3599-604, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10427055

ABSTRACT

Earthworms (Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) obtained from nitrous oxide (N(2)O)-emitting garden soils emitted 0.14 to 0.87 nmol of N(2)O h(-1) g (fresh weight)(-1) under in vivo conditions. L. rubellus obtained from N(2)O-emitting forest soil also emitted N(2)O, which confirmed previous observations (G. R. Karsten and H. L. Drake, Appl. Environ. Microbiol. 63:1878-1882, 1997). In contrast, commercially obtained Lumbricus terrestris did not emit N(2)O; however, such worms emitted N(2)O when they were fed (i.e., preincubated in) garden soils. A. caliginosa, L. rubellus, and O. lacteum substantially increased the rates of N(2)O emission of garden soil columns and microcosms. Extrapolation of the data to in situ conditions indicated that N(2)O emission by earthworms accounted for approximately 33% of the N(2)O emitted by garden soils. In vivo emission of N(2)O by earthworms obtained from both garden and forest soils was greatly stimulated when worms were moistened with sterile solutions of nitrate or nitrite; in contrast, ammonium did not stimulate in vivo emission of N(2)O. In the presence of nitrate, acetylene increased the N(2)O emission rates of earthworms; in contrast, in the presence of nitrite, acetylene had little or no effect on emission of N(2)O. In vivo emission of N(2)O decreased by 80% when earthworms were preincubated in soil supplemented with streptomycin and tetracycline. On a fresh weight basis, the rates of N(2)O emission of dissected earthworm gut sections were substantially higher than the rates of N(2)O emission of dissected worms lacking gut sections, indicating that N(2)O production occurred in the gut rather than on the worm surface. In contrast to living earthworms and gut sections that produced N(2)O under oxic conditions (i.e., in the presence of air), fresh casts (feces) from N(2)O-emitting earthworms produced N(2)O only under anoxic conditions. Collectively, these results indicate that gut-associated denitrifying bacteria are responsible for the in vivo emission of N(2)O by earthworms and contribute to the N(2)O that is emitted from certain terrestrial ecosystems.


Subject(s)
Bacteria/metabolism , Nitrous Oxide/metabolism , Oligochaeta/metabolism , Oligochaeta/microbiology , Acetylene/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification , Digestive System/microbiology , Ecosystem , Oxygen , Salts/pharmacology , Soil
3.
Int J Syst Bacteriol ; 47(2): 352-8, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9103621

ABSTRACT

Sporomusa silvacetica sp. nov. DG-1T (= DSMZ 10669T) (T = type strain) was isolated from well-drained, aggregated forest soil (pH 6.0) in east-central Germany. The cells were obligately anaerobic, slightly curved rods and were motile by means of laterally inserted flagella on the concave side of each cell. Typical cells were approximately 3.5 by 0.7 micron. Cells stained weakly gram positive, but thin sections revealed a complex multilayer cell wall. Spores were spherical and distended the sporangia. Growth and substrate utilization occurred with ferulate, vanillate, fructose, betaine, fumarate, 2,3-butanediol, pyruvate, lactate, glycerol, ethanol, methanol, formate, and H2-CO2. With most substrates, acetate was the primary reduced end product and was produced in stoichiometries indicative of an acetyl-coenzyme A pathway-dependent metabolism. Fumarate was dismutated to succinate and acetate. Methoxyl and acrylate groups of various aromatic compounds were O-demethylated and reduced, respectively. Yeast extract was not required for growth. Cells grew optimally at approximately 30 degrees C and pH 6.8; under these conditions and with fructose as the substrate, the doubling time was approximately 14 h. The lowest temperature that supported growth was between 5 and 10 degrees C. The carbon monoxide dehydrogenase and hydrogenase activities were approximately 9 and 102 mumol min-1 mg of protein-1, respectively. A type b cytochrome was detected in the membrane. The G + C content was approximately 43 mol%. Phylogenetic analysis of the 16S ribosomal DNA indicated that DG-1T was most closely related to members of the genus Sporomusa in the Clostridium subphylum of the gram-positive bacteria.


Subject(s)
Clostridium/classification , Gram-Positive Bacteria/classification , Base Composition , Clostridium/genetics , Clostridium/ultrastructure , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Fermentation , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/ultrastructure , Microscopy, Electron , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology
4.
Appl Environ Microbiol ; 62(2): 486-93, 1996 Feb.
Article in English | MEDLINE | ID: mdl-16535236

ABSTRACT

Everglades sediments (wetland soils) near sources of agricultural runoff had low redox potentials, were blackened with sulfide, and displayed high porewater phosphorus (total) concentrations and high water column conductivities. These sediments yielded 10(sup3)- to 10(sup4)-fold-higher numbers of culturable anaerobes, including methanogens, sulfate reducers, and acetate producers, than did sediments from Everglades and Lake Okeechobee comparative control sites not as directly associated with agricultural runoff. These observations demonstrated that there was a general, rather than specific, enhancement of the anaerobic microflora in the sediments most likely influenced by agricultural runoff. Despite these differences in microfloral patterns, methylmercury and total mercury levels were similar among these contrasting sediments. Although available sulfate and phosphorus appeared to stimulate the productivity of sulfate reducers in Everglades sediments, the number of culturable sulfate reducers did not directly correspond to the concentration of sulfate and phosphorus in porewaters. Microcosms supplemented with sulfate, nitrate, and phosphate altered the initial capacities of the sediment microflora to produce acetate and methane from endogenous matter. For sediments nearest sources of agricultural runoff, phosphorus temporarily enhanced acetate formation and initially suppressed methane production, sulfate enhanced acetate formation but did not significantly alter the production of methane, and nitrate totally suppressed the initial production of both methane and acetate. In regards to the latter, microbes capable of dissimilating nitrate to ammonium were present in greater culturable numbers than denitrifiers. In microcosms, acetate was a major source of methane, and supplemental hydrogen was directed towards the synthesis of acetate via CO(inf2)-dependent acetogenesis. These findings demonstrate that Everglades sediments nearest agricultural runoff have enhanced anaerobic microbial profiles and that the anaerobic microflora are poised to respond rapidly to phosphate, sulfate, and nitrate input.

5.
Infect Immun ; 59(8): 2664-72, 1991 Aug.
Article in English | MEDLINE | ID: mdl-1677349

ABSTRACT

A total of 127 extraintestinal Escherichia coli strains of the capsule serotypes K1, K5, and K100 from human and animal sources were analyzed for DNA sequences specific for the genes for various adhesins (P fimbriae [pap] and P-related sequences [prs], S fimbriae [sfa]/F1C fimbriae [foc], and type I fimbriae [fim]), aerobactin (aer), and hemolysin (hly). The expression of corresponding virulence factors was also tested. Twenty-four selected strains were analyzed by long-range DNA mapping to evaluate their genetic relationships. DNA sequences for the adhesins were often found in strains not expressing them, while strains with hemolysin and aerobactin genes usually did express them. Different isolates of the same serotype often expressed different virulence patterns. The use of virulence-associated gene probes for Southern hybridization with genomic DNA fragments separated by pulsed-field gel electrophoresis revealed that a highly heterogeneous restriction fragment length and hybridization pattern existed even within strains of the same serotype. Long-range DNA mapping is therefore useful for the evaluation of genetic relatedness among individual isolates and facilitates the performance of precise molecular epidemiology.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/genetics , Genes, Bacterial , Adhesins, Escherichia coli , Animals , Bacterial Outer Membrane Proteins/genetics , Blotting, Southern , Chromosome Mapping , DNA Probes , Electrophoresis, Agar Gel , Escherichia coli/classification , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Fimbriae, Bacterial , Hemolysin Proteins/genetics , Humans , Hydroxamic Acids/metabolism , Phenotype , Polymorphism, Restriction Fragment Length , Serotyping , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...