Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr Biochem ; 85: 108459, 2020 11.
Article in English | MEDLINE | ID: mdl-32745879

ABSTRACT

Stress-related disorders, such as depression and anxiety, present marked deficits in behavioral and cognitive functions related to reward. These are highly prevalent disabling conditions with high social and economic costs. Furthermore, a significant percentage of affected individuals cannot benefit from clinical intervention, opening space for new treatments. Although the literature data have reported limited and variable results regarding oxidative stress-related endpoints in stress-related disorders, the possible neuroprotective effect of antioxidant compounds, such as ascorbic acid (vitamin C), emerges as a possible therapy strategy for psychiatric diseases. Here, we briefly present background information on biological activity of ascorbic acid, particularly functions related to the CNS homeostasis. Additionaly, we reviewed the available information on the role of ascorbic acid in stress-related diseases, focusing on supplementation and depletion studies. The vitamin C deficiency is widely associated to stress-related diseases. Although the efficacy of this vitamin in anxiety spectrum disorders is less stablished, several studies showed that ascorbic acid supplementation produces antidepressant effect and improves mood. Interestingly, the modulation of monoaminergic and glutamatergic neurotransmitter systems is postulated as pivotal target for the antidepressant and anxiolytic effects of this vitamin. Given that ascorbic acid supplementation produces fast therapeutic response with low toxicity and high tolerance, it can be considered as a putative candidate for the treatment of mood and anxiety disorders, especially those that are refractory to current treatments. Herein, the literature was reviewed considering the potential use of ascorbic acid as an adjuvant in the treatment of anxiety and depression.


Subject(s)
Antioxidants/therapeutic use , Anxiety/drug therapy , Ascorbic Acid/therapeutic use , Depression/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Antioxidants/pharmacology , Anxiety Disorders/drug therapy , Ascorbic Acid/pharmacology , Depressive Disorder/drug therapy , Humans , Neuroprotective Agents/pharmacology , Stress, Psychological/drug therapy
2.
Pharmacol Res ; 141: 303-309, 2019 03.
Article in English | MEDLINE | ID: mdl-30610962

ABSTRACT

Hypothalamic Agrp neurons are critical regulators of food intake in adult mice. In addition to food intake, these neurons have been involved in other cognitive processes, such as the manifestation of stereotyped behaviors. Here, we evaluated the extent to which Agrp neurons modulate mouse behavior in spatial memory-related tasks. We found that activation of Agrp neurons did not affect spatial learning but altered behavioral flexibility using a modified version of the Barnes Maze task. Furthermore, using the Y-maze test to probe working memory, we found that chemogenetic activation of Agrp neurons reduced spontaneous alternation behavior mediated by the neuropeptide Y receptor-5 signaling. These findings suggest novel functional properties of Agrp neurons in memory-related cognitive processes.


Subject(s)
Agouti-Related Protein/metabolism , Hypothalamus/physiology , Memory , Neurons/metabolism , Animals , Cognition , Eating , Female , Male , Maze Learning , Mice , Neuropeptide Y/metabolism
3.
Neurotoxicology ; 66: 107-120, 2018 05.
Article in English | MEDLINE | ID: mdl-29605442

ABSTRACT

The primary etiology of Parkinson's disease (PD) remains unclear, but likely reflects a combination of genetic and environmental factors. Exposure to some pesticides, including ziram (zinc dimethyldithiocarbamate), is a relevant risk factor for PD. Like some other environmental neurotoxicants, we hypothesized that ziram can enter the central nervous system from the nasal mucosa via the olfactory nerves. To address this issue, we evaluated the effects of 1, 2 or 4 days of intranasal (i.n., 1 mg/nostril/day) infusions of sodium dimethyldithiocarbamate (NaDMDC), a dimethyldithiocarbamate more soluble than ziram, on locomotor activity in the open field, neurological severity score and rotarod performance. We also addressed the effects of four daily i.n. NaDMDC infusions on olfactory bulb (OB) and striatal measures of cell death, reactive oxygen species (ROS), tyrosine hydroxylase, and the levels of dopamine, noradrenaline, serotonin, and their metabolites. A single i.n. administration of NaDMDC did not significantly alter the behavioral measures. Two consecutive days of i.n. NaDMDC administrations led to a transient neurological deficit that spontaneously resolved within a week. However, the i.n. infusions of NaDMDC for 4 consecutive days induced motor and neurological deficits for up to 7 days after the last NaDMDC administration and increased striatal TH immunocontent and dopamine degradation within a day of the last infusion. Pharmacological treatment with the anti-parkinsonian drugs l-DOPA and apomorphine improved the NaDMDC-induced locomotor deficits. NaDMDC increased serotonin levels and noradrenaline metabolism in the OB 24 h after the last NaDMDC infusion, ROS levels in the OB 2 h after the last infusion, and striatum 2 and 24 h after the last infusion. These results demonstrate, for the first time, that i.n. NaDMDC administration induces neurobehavioral and neurochemical impairments in mice. This accords with evidence that dimethyldithio-carbamate exposure increases the risk of PD and highlights the possibility that olfactory system could be a major route for NaDMDC entry to central nervous system.


Subject(s)
Corpus Striatum/drug effects , Dimethyldithiocarbamate/toxicity , Dopamine/metabolism , Motor Activity/drug effects , Olfactory Bulb/drug effects , Parkinson Disease, Secondary/metabolism , Administration, Intranasal , Animals , Corpus Striatum/metabolism , Dimethyldithiocarbamate/administration & dosage , Hypothermia/chemically induced , Male , Mice , Olfactory Bulb/metabolism , Oxidative Stress , Reactive Oxygen Species , Tyrosine 3-Monooxygenase
SELECTION OF CITATIONS
SEARCH DETAIL
...