Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Genomics ; 16: 31, 2015 Jan 31.
Article in English | MEDLINE | ID: mdl-25636331

ABSTRACT

BACKGROUND: Clostridium difficile strain 630Δerm is a spontaneous erythromycin sensitive derivative of the reference strain 630 obtained by serial passaging in antibiotic-free media. It is widely used as a defined and tractable C. difficile strain. Though largely similar to the ancestral strain, it demonstrates phenotypic differences that might be the result of underlying genetic changes. Here, we performed a de novo assembly based on single-molecule real-time sequencing and an analysis of major methylation patterns. RESULTS: In addition to single nucleotide polymorphisms and various indels, we found that the mobile element CTn5 is present in the gene encoding the methyltransferase rumA rather than adhesin CD1844 where it is located in the reference strain. CONCLUSIONS: Together, the genetic features identified in this study may help to explain at least part of the phenotypic differences. The annotated genome sequence of this lab strain, including the first analysis of major methylation patterns, will be a valuable resource for genetic research on C. difficile.


Subject(s)
Clostridioides difficile/genetics , Drug Resistance, Microbial/genetics , Enterocolitis, Pseudomembranous/genetics , Interspersed Repetitive Sequences/genetics , Base Sequence , DNA Methylation/drug effects , Enterocolitis, Pseudomembranous/drug therapy , Enterocolitis, Pseudomembranous/microbiology , Erythromycin/therapeutic use , Genome, Bacterial , Humans , Translocation, Genetic
2.
Front Microbiol ; 6: 1549, 2015.
Article in English | MEDLINE | ID: mdl-26779178

ABSTRACT

BACKGROUND: Immuno-compromised mice infected with Helicobacter typhlonius are used to model microbially inducted inflammatory bowel disease (IBD). The specific mechanism through which H. typhlonius induces and promotes IBD is not fully understood. Access to the genome sequence is essential to examine emergent properties of this organism, such as its pathogenicity. To this end, we present the complete genome sequence of H. typhlonius MIT 97-6810, obtained through single-molecule real-time sequencing. RESULTS: The genome was assembled into a single circularized contig measuring 1.92 Mbp with an average GC content of 38.8%. In total 2,117 protein-encoding genes and 43 RNA genes were identified. Numerous pathogenic features were found, including a putative pathogenicity island (PAIs) containing components of type IV secretion system, virulence-associated proteins and cag PAI protein. We compared the genome of H. typhlonius to those of the murine pathobiont H. hepaticus and human pathobiont H. pylori. H. typhlonius resembles H. hepaticus most with 1,594 (75.3%) of its genes being orthologous to genes in H. hepaticus. Determination of the global methylation state revealed eight distinct recognition motifs for adenine and cytosine methylation. H. typhlonius shares four of its recognition motifs with H. pylori. CONCLUSION: The complete genome sequence of H. typhlonius MIT 97-6810 enabled us to identify many pathogenic features suggesting that H. typhlonius can act as a pathogen. Follow-up studies are necessary to evaluate the true nature of its pathogenic capabilities. We found many methylated sites and a plethora of restriction-modification systems. The genome, together with the methylome, will provide an essential resource for future studies investigating gene regulation, host interaction and pathogenicity of H. typhlonius. In turn, this work can contribute to unraveling the role of Helicobacter in enteric disease.

SELECTION OF CITATIONS
SEARCH DETAIL