Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci Med ; 22(3): 488-495, 2023 09.
Article in English | MEDLINE | ID: mdl-37711700

ABSTRACT

The volleyball spike is repeated many times in practices and games, presenting a high risk of overuse injury. Previous biomechanical analyses estimating forces on the shoulder during spiking have not included the force exerted on the arm by the ball, because no practical method exists to estimate the contact force between the ball and the hand. The objective of the study was to model the internal shoulder joint reactions while including the measured ball contact force. Ten adolescent female volleyball players performed spikes while we recorded 3D motion capture data for both ball and player. Using an impulse-momentum analysis, we estimated the ball contact force, then included the force in a computational simulation model to estimate the torques produced by the shoulder. The study found that post-contact ball velocities range from 8.6 m/s - 18.2 m/s with net forces between 238 N - 672 N. Most notably, when the ball contact force was included, the average modeled internal shoulder torque to internally rotate the arm increased from -26 N-m to +44 N-m (p < 0.001). These data suggest that neglecting the contact force may risk misinterpreting connections between biomechanics and injury due to spiking. More accurate joint mechanics models will lead to better injury prevention recommendations for volleyball players of all ages.


Subject(s)
Shoulder , Volleyball , Adolescent , Female , Humans , Torque , Upper Extremity , Hand
2.
J Orthop Res ; 41(3): 524-533, 2023 03.
Article in English | MEDLINE | ID: mdl-35716160

ABSTRACT

Surgeons routinely perform incremental releases on overly tight ligaments during total knee arthroplasty (TKA) to reduce ligament tension and achieve their desired implant alignment. However, current methods to assess whether the surgeon achieved their desired reduction in the tension of a released ligament are subjective and/or do not provide a quantitative metric of tension in an individual ligament. Accordingly, the purpose of this study was to determine whether shear wave tensiometry, a novel method to assess tension in individual ligaments based on the speed of shear wave propagation, can detect changes in ligament tension following incremental releases. In seven medial and eight lateral collateral porcine ligaments (MCL and LCL, respectively), we measured shear wave speeds and ligament tensions before and after incremental releases consisting of punctures with an 18-gauge needle. We found that shear wave speed squared decreased linearly with decreasing tension in both the MCL (average coefficient of determination (R2 avg ) = 0.76) and LCL (R2 avg = 0.94). We determined that errors in predicting tension following incremental releases were 26.2 and 14.2 N in the MCL and LCL, respectively, using ligament-specific calibrations. These results suggest shear wave tensiometry is a promising method to objectively measure the tension reduction in released structures. Clinical Significance: Direct, objective measurements of the tension changes in individual ligaments following release could enhance surgical precision during soft tissue balancing in total knee arthroplasty. Thus, shear wave tensiometry could help surgeons reduce the risk of poor outcomes associated with overly tight ligaments, including residual knee pain and stiffness.


Subject(s)
Arthroplasty, Replacement, Knee , Collateral Ligaments , Knee Prosthesis , Humans , Animals , Swine , Knee Joint/surgery , Arthroplasty, Replacement, Knee/methods , Knee/surgery , Range of Motion, Articular , Biomechanical Phenomena
3.
Micromachines (Basel) ; 15(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38258151

ABSTRACT

Shear wave tensiometry is a noninvasive method for directly measuring wave speed as a proxy for force in tendons during dynamic activities. Traditionally, tensiometry has used broadband excitation pulses and measured the wave travel time between two sensors. In this work, we demonstrate a new method for tracking phase velocity using shaped excitations and measurements from a single sensor. We observed modulation of phase velocity in the Achilles tendon that was generally consistent with wave speed measures obtained via broadband excitation. We also noted a frequency dependence of phase velocity, which is expected for dispersive soft tissues. The implementation of this method could enhance the use of noninvasive wave speed measures to characterize tendon forces. Further, the approach allows for the design of smaller shear wave tensiometers usable for a broader range of tendons and applications.

4.
Sci Robot ; 7(71): eabq1514, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36260697

ABSTRACT

Exosuits have the potential to assist locomotion in both healthy and pathological populations, but the effect of exosuit assistance on the underlying muscle-tendon tissue loading is not yet understood. In this study, we used shear wave tensiometers to characterize the modulation of Achilles tendon force with load carriage and exosuit assistance at the ankle. When walking (1.25 m/s) unassisted on a treadmill with load carriage weights of 15 and 30% of body weight, peak Achilles tendon force increased by 11 and 23%, respectively. Ankle exosuit assistance significantly reduced peak Achilles tendon force relative to unassisted, although the magnitude of change was variable across participants. Peak Achilles tendon force was significantly correlated with peak ankle torque for unassisted walking across load carriage conditions. However, when ankle plantarflexor assistance was applied, the relationship between peak tendon force and peak biological ankle torque was no longer significant. An outdoor pilot study was conducted in which a wearable shear wave tensiometer was used to measure Achilles tendon wave speed and compare across an array of assistance loading profiles. Reductions in tendon loading varied depending on the profile, highlighting the importance of in vivo measurements of muscle and tendon forces when studying and optimizing exoskeletons and exosuits.


Subject(s)
Achilles Tendon , Humans , Achilles Tendon/physiology , Biomechanical Phenomena , Pilot Projects , Walking/physiology , Ankle Joint/physiology
5.
Sensors (Basel) ; 22(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336454

ABSTRACT

Shear wave tensiometry is a noninvasive approach for assessing in vivo tendon forces based on the speed of a propagating shear wave. Wave speed is measured by impulsively exciting a shear wave in a tendon and then assessing the wave travel time between skin-mounted accelerometers. Signal distortion with wave travel can cause errors in the estimated wave travel time. In this study, we investigated the use of a Kalman filter to fuse spatial and temporal accelerometer measurements of wave propagation. Spatial measurements consist of estimated wave travel times between accelerometers. Temporal measurements are the change in wave arrival at a fixed accelerometer between successive impulsive taps. The Kalman filter substantially improved the accuracy of estimated wave speeds when applied to simulated tensiometer data. The variability of estimated wave speed was reduced by ~55% in the presence of random sensor noise. It was found that increasing the number of accelerometers from two to three further reduced wave speed errors by 45%. The use of redundant accelerometers (>2) also improved the robustness of wave speed measures in the presence of uncertainty in accelerometer location. We conclude that the use of a Kalman filter and redundant accelerometers can enhance the fidelity of using shear wave tensiometers to track tendon wave speed and loading during movement.


Subject(s)
Movement , Tendons , Accelerometry , Phantoms, Imaging , Skin
6.
Sensors (Basel) ; 22(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35214491

ABSTRACT

Muscle-tendon power output is commonly assessed in the laboratory through the work loop, a paired analysis of muscle force and length during a cyclic task. Work-loop analysis of muscle-tendon function in out-of-lab conditions has been elusive due to methodological limitations. In this work, we combined kinetic and kinematic measures from shear wave tensiometry and inertial measurement units, respectively, to establish a wearable system for estimating work and power output from the soleus and gastrocnemius muscles during outdoor locomotion. Across 11 healthy young adults, we amassed 4777 strides of walking on slopes from -10° to +10°. Results showed that soleus work scales with incline, while gastrocnemius work is relatively insensitive to incline. These findings agree with previous results from laboratory-based studies while expanding technological capabilities by enabling wearable analysis of muscle-tendon kinetics. Applying this system in additional settings and activities could improve biomechanical knowledge and evaluation of protocols in scenarios such as rehabilitation, device design, athletics, and military training.


Subject(s)
Achilles Tendon , Wearable Electronic Devices , Achilles Tendon/physiology , Biomechanical Phenomena/physiology , Humans , Kinetics , Locomotion/physiology , Muscle, Skeletal/physiology , Young Adult
7.
Article in English | MEDLINE | ID: mdl-33345060

ABSTRACT

Prior studies have observed an age-related decline in net ankle power and work at faster walking speeds. However, the underlying changes in muscle-tendon behavior are not well-understood, and are challenging to infer from joint level analyses. This study used shear wave tensiometry to investigate the modulation of force and work done by the triceps surae across walking speeds. Fourteen healthy young (7F/7M, 26 ± 5 years) and older (7F/7M, 67 ± 5 years) adults were tested. Subjects walked on an instrumented treadmill at four walking speeds (0.75, 1.00, 1.25, and 1.50 m/s) while lower extremity kinematics and Achilles tendon shear wave speeds were collected. Subject-specific calibrations were used to compute Achilles tendon force from wave speed. Excursions of the soleus and gastrocnemius muscle-tendon units were computed from the kinematic data and subject-specific measures of the Achilles tendon moment arm. Work loop plots were then used to assess effective muscle-tendon stiffness during lengthening, and positive, negative, and net work production during stance. Two-way mixed ANOVAs were used to evaluate the effects of age group and walking speed on each outcome measure. Tendon loading during muscle-tendon lengthening (effective stiffness) did not differ between age groups, but did vary with speed. The soleus became effectively stiffer with increasing speed while the gastrocnemius became effectively more compliant. There was a marked age-related deficit in net soleus (-66% on average) and gastrocnemius (-36%) work across all walking speeds. We did not observe an age-speed interaction effect on net work production. These results suggest the age-related deficit in triceps surae output in walking is pervasive across speed, and hence seemingly not linked to absolute mechanical demands of the task.

8.
J Biomech ; 90: 9-15, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31088754

ABSTRACT

It has recently been shown that shear wave speed in tendons is directly dependent on axial stress. Hence, wave speed could be used to infer tendon load provided that the wave speed-stress relationship can be calibrated and remains robust across loading conditions. The purpose of this study was to investigate the effects of loading rate and fluid immersion on the wave speed-stress relationship in ex vivo tendons, and to assess potential calibration techniques. Tendon wave speed and axial stress were measured in 20 porcine digital flexor tendons during cyclic (0.5, 1.0 and 2.0 Hz) or static axial loading. Squared wave speed was highly correlated to stress (r2avg = 0.98) and was insensitive to loading rate (p = 0.57). The constant of proportionality is the effective density, which reflects the density of the tendon tissue and additional effective mass added by the adjacent fluid. Effective densities of tendons vibrating in a saline bath averaged 1680 kg/m3 and added mass effects caused wave speeds to be 22% lower on average in a saline bath than in air. The root-mean-square error between predicted and measured stress was 0.67 MPa (6.7% of maximum stress) when using tendon-specific calibration parameters. These errors increased to 1.31 MPa (13.1% of maximum stress) when calibrating based on group-compiled data from ten tendons. These results support the feasibility of calculating absolute tendon stresses from wave speed squared based on linear calibration relationships.


Subject(s)
Stress, Mechanical , Tendons/physiology , Animals , Biomechanical Phenomena , Calibration , Swine , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...