Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(26): 261803, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37450833

ABSTRACT

A chiral chemical potential present in the early Universe can source helical hypermagnetic fields through the chiral plasma instability. If these hypermagnetic fields survive until the electroweak phase transition, they source a contribution to the baryon asymmetry of the Universe. In this Letter, we demonstrate that lepton flavor asymmetries above |µ|/T∼9×10^{-3} trigger this mechanism even for vanishing total lepton number. This excludes the possibility of such large lepton flavor asymmetries present at temperatures above 10^{6} GeV, setting a constraint which is about 2 orders of magnitude stronger than the current CMB and BBN limits.


Subject(s)
Embryonic Development , Plasma , Phase Transition , Temperature
2.
Structure ; 30(9): 1254-1268.e7, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35870450

ABSTRACT

The mitochondrial Lon protease (LonP1) regulates mitochondrial health by removing redundant proteins from the mitochondrial matrix. We determined LonP1 in eight nucleotide-dependent conformational states by cryoelectron microscopy (cryo-EM). The flexible assembly of N-terminal domains had 3-fold symmetry, and its orientation depended on the conformational state. We show that a conserved structural motif around T803 with a high similarity to the trypsin catalytic triad is essential for proteolysis. We show that LonP1 is not regulated by redox potential, despite the presence of two conserved cysteines at disulfide-bonding distance in its unfoldase core. Our data indicate how sequential ATP hydrolysis controls substrate protein translocation in a 6-fold binding change mechanism. Substrate protein translocation, rather than ATP hydrolysis, is a rate-limiting step, suggesting that LonP1 is a Brownian ratchet with ATP hydrolysis preventing translocation reversal. 3-fold rocking motions of the flexible N-domain assembly may assist thermal unfolding of the substrate protein.


Subject(s)
Protease La , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism , Adenosine Triphosphate/metabolism , Cryoelectron Microscopy , Humans , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Protease La/genetics , Protease La/metabolism
3.
Phys Rev Lett ; 129(1): 011803, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35841549

ABSTRACT

Charged-lepton flavor violation (CLFV) is a smoking-gun signature of physics beyond the standard model. The discovery of CLFV in upcoming experiments would indicate that CLFV processes must have been efficient in the early Universe at relatively low temperatures. In this Letter, we point out that such efficient CLFV interactions open up new ways of creating the baryon asymmetry of the Universe. First, we quote the two-loop corrections from charged-lepton Yukawa interactions to the chemical transport in the standard model plasma, which imply that nonzero lepton flavor asymmetries summing up to B-L=0 are enough to generate the baryon asymmetry. Then, we describe two scenarios of what we call leptoflavorgenesis, where efficient CLFV processes are responsible for the generation of primordial lepton flavor asymmetries that are subsequently converted to a baryon asymmetry by weak sphaleron processes. Here, the conversion factor from lepton flavor asymmetry to baryon asymmetry is suppressed by charged-lepton Yukawa couplings squared, which provides a natural explanation for the smallness of the observed baryon-to-photon ratio.

4.
Phys Rev Lett ; 126(20): 201802, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34110201

ABSTRACT

We present a leptogenesis mechanism based on the standard type-I seesaw model that successfully operates at right-handed-neutrino masses as low as a few hundred TeV. This mechanism, which we dub wash-in leptogenesis, does not require any CP violation in the neutrino sector and can be implemented even in the regime of strong wash-out. The key idea behind wash-in leptogenesis is to generalize standard freeze-out leptogenesis to a nonminimal cosmological background in which the chemical potentials of all particles not in chemical equilibrium at the temperature of leptogenesis are allowed to take arbitrary values. This sets the stage for building a plethora of new baryogenesis models where chemical potentials generated at high temperatures are reprocessed to generate a nonvanishing B-L asymmetry at low temperatures. As concrete examples, we discuss wash-in leptogenesis after axion inflation and in the context of grand unification.

5.
Phys Rev Lett ; 126(4): 041305, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33576657

ABSTRACT

The North American Nanohertz Observatory for Gravitational Waves has recently reported strong evidence for a stochastic common-spectrum process affecting the pulsar timing residuals in its 12.5-year data set. We demonstrate that this process admits an interpretation in terms of a stochastic gravitational-wave background emitted by a cosmic-string network in the early Universe. We study stable Nambu-Goto strings in dependence of their tension Gµ and loop size α and show that the entire viable parameter space will be probed by an array of future experiments.

6.
Phys Rev Lett ; 115(1): 011302, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26182088

ABSTRACT

Once a light axionlike scalar field couples to the electroweak gauge bosons, its classical motion during reheating induces an effective chemical potential for the fermion number. In the presence of rapid lepton number (L)-violating processes in the plasma, such a chemical potential provides a favorable opportunity for baryogenesis via leptogenesis. We are able to demonstrate that L violation due to the exchange of heavy Majorana neutrinos is sufficient for a successful realization of this idea. Our mechanism represents a novel and minimal alternative to thermal leptogenesis, which turns out to be insensitive to the masses and CP-violating phases in the heavy neutrino sector. It is consistent with heavy neutrino masses close to the scale of grand unification and, quite complementary to thermal leptogenesis, requires the reheating temperature to be at least of order 10(12) GeV.

SELECTION OF CITATIONS
SEARCH DETAIL
...