Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Rep ; 19(1): 118-134, 2018 01.
Article in English | MEDLINE | ID: mdl-29141987

ABSTRACT

T-box transcription factors play essential roles in multiple aspects of vertebrate development. Here, we show that cooperative function of BRACHYURY (T) with histone-modifying enzymes is essential for mouse embryogenesis. A single point mutation (TY88A) results in decreased histone 3 lysine 27 acetylation (H3K27ac) at T target sites, including the T locus, suggesting that T autoregulates the maintenance of its expression and functions by recruiting permissive chromatin modifications to putative enhancers during mesoderm specification. Our data indicate that T mediates H3K27ac recruitment through a physical interaction with p300. In addition, we determine that T plays a prominent role in the specification of hematopoietic and endothelial cell types. Hematopoietic and endothelial gene expression programs are disrupted in TY88A mutant embryos, leading to a defect in the differentiation of hematopoietic progenitors. We show that this role of T is mediated, at least in part, through activation of a distal Lmo2 enhancer.


Subject(s)
Embryonic Development/genetics , Fetal Proteins/genetics , Histones/metabolism , Mesoderm/metabolism , Mouse Embryonic Stem Cells/metabolism , T-Box Domain Proteins/genetics , p300-CBP Transcription Factors/genetics , Acetylation , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Base Sequence , Cell Differentiation , Cell Lineage/genetics , Chromatin/chemistry , Chromatin/metabolism , Embryo, Mammalian , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fetal Proteins/metabolism , Gene Expression Regulation, Developmental , Genetic Loci , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Histones/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Mesoderm/cytology , Mesoderm/growth & development , Mice , Mouse Embryonic Stem Cells/cytology , Point Mutation , Protein Binding , Signal Transduction , T-Box Domain Proteins/metabolism , p300-CBP Transcription Factors/metabolism
2.
Cell Mol Life Sci ; 73(13): 2491-509, 2016 07.
Article in English | MEDLINE | ID: mdl-27007508

ABSTRACT

Since decades it has been known that non-protein-coding RNAs have important cellular functions. Deep sequencing recently facilitated the discovery of thousands of novel transcripts, now classified as long noncoding RNAs (lncRNAs), in many vertebrate and invertebrate species. LncRNAs are involved in a wide range of cellular mechanisms, from almost all aspects of gene expression to protein translation and stability. Recent findings implicate lncRNAs as key players of cellular differentiation, cell lineage choice, organogenesis and tissue homeostasis. Moreover, lncRNAs are involved in pathological conditions such as cancer and cardiovascular disease, and therefore provide novel biomarkers and pharmaceutical targets. Here we discuss examples illustrating the versatility of lncRNAs in gene control, development and differentiation, as well as in human disease.


Subject(s)
Cardiovascular Diseases/genetics , Gene Expression Regulation , Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Chromatin Assembly and Disassembly , DNA Methylation , Epigenesis, Genetic , Histone Code , Humans , Neoplasms/metabolism , Neoplasms/pathology , RNA, Long Noncoding/analysis , RNA, Long Noncoding/metabolism
3.
Arterioscler Thromb Vasc Biol ; 35(7): 1645-52, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26023081

ABSTRACT

OBJECTIVE: Altering endothelial biology through epigenetic modifiers is an attractive novel concept, which is, however, just in its beginnings. We therefore set out to identify chromatin modifiers important for endothelial gene expression and contributing to angiogenesis. APPROACH AND RESULTS: To identify chromatin modifying enzymes in endothelial cells, histone demethylases were screened by microarray and polymerase chain reaction. The histone 3 lysine 4 demethylase JARID1B was identified as a highly expressed enzyme at the mRNA and protein levels. Knockdown of JARID1B by shRNA in human umbilical vein endothelial cells attenuated cell migration, angiogenic sprouting, and tube formation. Similarly, pharmacological inhibition and overexpression of a catalytic inactive JARID1B mutant reduced the angiogenic capacity of human umbilical vein endothelial cells. To identify the in vivo relevance of JARID1B in the vascular system, Jarid1b knockout mice were studied. As global knockout results in increased mortality and developmental defects, tamoxifen-inducible and endothelial-specific knockout mice were generated. Acute knockout of Jarid1b attenuated retinal angiogenesis and endothelial sprout outgrowth from aortic segments. To identify the underlying mechanism, a microarray experiment was performed, which led to the identification of the antiangiogenic transcription factor HOXA5 to be suppressed by JARID1B. Importantly, downregulation or inhibition of JARID1B, but not of JARID1A and JARID1C, induced HOXA5 expression in human umbilical vein endothelial cells. Consistently, chromatin immunoprecipitation revealed that JARID1B occupies and reduces the histone 3 lysine 4 methylation levels at the HOXA5 promoter, demonstrating a direct function of JARID1B in endothelial HOXA5 gene regulation. CONCLUSIONS: JARID1B, by suppressing HOXA5, maintains the endothelial angiogenic capacity in a demethylase-dependent manner.


Subject(s)
DNA-Binding Proteins/physiology , Epigenesis, Genetic , Homeodomain Proteins/genetics , Jumonji Domain-Containing Histone Demethylases/physiology , Neovascularization, Physiologic/genetics , Nuclear Proteins/physiology , Phosphoproteins/genetics , Animals , Cells, Cultured , Endothelial Cells/physiology , Homeodomain Proteins/physiology , Humans , Mice, Knockout , Phosphoproteins/physiology , Transcription Factors , Transcription, Genetic , Umbilical Veins
4.
PLoS Genet ; 9(4): e1003461, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23637629

ABSTRACT

Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.


Subject(s)
Jumonji Domain-Containing Histone Demethylases , Repressor Proteins , Animals , Embryonic Development , Genes, Developmental , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Mice , Nuclear Proteins/genetics , Polycomb-Group Proteins/genetics , Repressor Proteins/genetics
5.
EMBO J ; 30(22): 4586-600, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22020125

ABSTRACT

H3K4 methylation is associated with active transcription and in combination with H3K27me3 thought to keep genes regulating development in a poised state. The contribution of enzymes regulating trimethylation of lysine 4 at histone 3 (H3K4me3) levels to embryonic stem cell (ESC) self-renewal and differentiation is just starting to emerge. Here, we show that the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for ESC self-renewal, but essential for ESC differentiation along the neural lineage. By genome-wide location analysis, we demonstrate that Jarid1b localizes predominantly to transcription start sites of genes encoding developmental regulators, of which more than half are also bound by Polycomb group proteins. Virtually all Jarid1b target genes are associated with H3K4me3 and depletion of Jarid1b in ESCs leads to a global increase of H3K4me3 levels. During neural differentiation, Jarid1b-depleted ESCs fail to efficiently silence lineage-inappropriate genes, specifically stem and germ cell genes. Our results delineate an essential role for Jarid1b-mediated transcriptional control during ESC differentiation.


Subject(s)
Embryonic Stem Cells/physiology , Histones/metabolism , Neurogenesis , Neurons/physiology , Transcription, Genetic , Animals , Antibodies, Monoclonal , Cell Line , Central Nervous System/embryology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/cytology , Gene Expression Profiling , Gene Knockout Techniques/methods , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/cytology , Polycomb-Group Proteins , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering , Repressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...