Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 13(7): 1165-1171, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35859878

ABSTRACT

We describe the synthesis of triazole-containing carboline derivatives and their utility as bromodomain and extra-terminal (BET) inhibitors. A convergent synthetic route permitted the detailed investigation of deuteration and fluorination strategies to reduce clearance while maintaining a favorable in vitro profile. This work led to the identification of a potent BET inhibitor, 2-{8-fluoro-3-[4-(2H3)methyl-1-methyl-1H-1,2,3-triazol-5-yl]-5-[(S)-(oxan-4-yl)(phenyl)methyl]-5H-pyrido[3,2-b]indol-7-yl}propan-2-ol (15), which demonstrated reduced clearance and an improved pharmacokinetic (PK) profile across preclinical species. Importantly, no major metabolite was observed when 15 was incubated with human hepatocytes (hHEP) for 2 h. This study culminated with the evaluation of 15 in a mouse triple-negative breast cancer (TNBC) tumor model where it demonstrated robust efficacy at low doses.

2.
Bioorg Med Chem Lett ; 20(12): 3579-83, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20483614

ABSTRACT

A series of 5-arylamino-1,2,4-triazin-6(1H)-ones was synthesized and evaluated as antagonists at the corticotropin releasing factor receptor. Formation of CYP-mediated oxidative reactive metabolites previously observed in a related N(3)-phenylpyrazinone structure was minimized by incorporation of the additional ring nitrogen found in the triazinones.


Subject(s)
Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Triazines/chemical synthesis , Triazines/pharmacology , Animals , Humans , Inhibitory Concentration 50 , Oxidation-Reduction , Pyrazines , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 20(6): 1890-4, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20176478

ABSTRACT

A series of N(3)-pyridylpyrazinones was investigated as corticotropin-releasing factor-1 receptor antagonists. It was observed that the binding affinity of analogues containing a pyridyl group was influenced not only by the substitution pattern on the pyridyl group, but also by the pK(a) of the pyridyl nitrogen. Analogues containing a novel 6-(difluoromethoxy)-2,5-dimethylpyridin-3-amine group were among the most potent N(3)-pyridylpyrazinones synthesized. The synthesis and SAR of N(3)-pyridylpyrazinones is described herein.


Subject(s)
Pyrazines/chemical synthesis , Pyrazines/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Pyrazines/chemistry , Structure-Activity Relationship
4.
J Med Chem ; 52(14): 4161-72, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19552436

ABSTRACT

A series of pyrazinone-based heterocycles was identified as potent and orally active corticotropin-releasing factor-1 (CRF(1)) receptor antagonists. Selected compounds proved efficacious in an anxiety model in rats; however, pharmacokinetic properties were not optimal. In this article, we describe an in vitro intrinsic clearance-based approach to the optimization of pyrazinone-based CRF(1) receptor antagonists wherein sites of metabolism were identified by incubation with human liver microsomes. It was found that the rate of metabolism could be decreased by incorporation of appropriate substituents at the primary sites of metabolism. This led to the discovery of compound 12x, a highly potent (IC(50) = 1.0 nM) and selective CRF(1) receptor antagonist with good oral bioavailability (F = 52%) in rats and efficacy in the defensive withdrawal anxiety test in rats.


Subject(s)
Pyrazines/pharmacology , Pyrazines/pharmacokinetics , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Humans , Inhibitory Concentration 50 , Male , Metabolic Clearance Rate , Pyrazines/chemistry , Pyrazines/metabolism , Rats , Receptors, Corticotropin-Releasing Hormone/metabolism
5.
J Med Chem ; 52(14): 4173-91, 2009 Jul 23.
Article in English | MEDLINE | ID: mdl-19552437

ABSTRACT

Evidence suggests that corticotropin-releasing factor-1 (CRF(1)) receptor antagonists may offer therapeutic potential for the treatment of diseases associated with elevated levels of CRF such as anxiety and depression. A pyrazinone-based chemotype of CRF(1) receptor antagonists was discovered. Structure-activity relationship studies led to the identification of numerous potent analogues including 12p, a highly potent and selective CRF(1) receptor antagonist with an IC(50) value of 0.26 nM. The pharmacokinetic properties of 12p were assessed in rats and Cynomolgus monkeys. Compound 12p was efficacious in the defensive withdrawal test (an animal model of anxiety) in rats. The synthesis, structure-activity relationships and in vivo properties of compounds within the pyrazinone chemotype are described.


Subject(s)
Pyrazines/chemistry , Pyrazines/pharmacology , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors , Animals , Cell Line, Tumor , Humans , Macaca fascicularis , Male , Pyrazines/chemical synthesis , Pyrazines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 15(6): 1619-21, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15745809

ABSTRACT

A series of N,N-dimethylhomotryptamines was prepared and their binding affinities at the serotonin transporter (SERT) were determined. Compounds possessing an electron withdrawing substituent at the C5-position of the indole nucleus were found to be potent SSRIs. Initial attempts at conformational restriction of the propylamine sidechain by incorporation of a quinuclidine bicyclic structure did not improve binding affinity at SERT.


Subject(s)
Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology , Tryptamines/chemistry , Tryptamines/pharmacology , Cell Line , Humans , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/metabolism , Models, Chemical , Molecular Structure , Nerve Tissue Proteins/metabolism , Protein Binding , Serotonin Plasma Membrane Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...