Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
2.
Front Microbiol ; 15: 1359678, 2024.
Article in English | MEDLINE | ID: mdl-38426061

ABSTRACT

Introduction: Numerous factors are known to influence reproductive efficiency in ewes, but few studies have investigated the potential role of vaginal microbiota in sheep reproductive success. The objective of this study was to thoroughly characterize the ewe vaginal microbiota throughout the course of pregnancy. Methods: Vaginal samples were collected from 31 pregnant Hampshire and Hampshire X Suffolk crossbred ewes on a weekly basis from pre-breeding to pregnancy testing and then biweekly until just after lambing. To characterize the vaginal microbial communities, DNA was extracted and 16S rRNA gene Illumina MiSeq amplicon sequencing was performed. Results and Discussion: Alpha diversity metrics indicated an increase in species richness, evenness, and overall diversity throughout gestation. Distinct shifts in the bacterial communities were observed during gestation and were segregated into three periods: early gestation, a transitional period and mid/late gestation. During early gestation, Actinobacillus, Histophilus, and unclassified Leptotrichiaceae were found in greater relative abundance. During the transitional period, a population shift occurred characterized by increasing relative abundance of Streptococcus and Staphylococcus. During mid/late gestation, Staphylococcus, Streptococcus, and Ureaplasma had the greatest relative abundance. These shifts in the microbial population throughout the ewe's gestation are likely related to hormonal changes triggered by the growing conceptus, specifically increasing blood concentration of progesterone. The transitional period shift in vaginal microbial communities potentially aligns with the placental take-over of progesterone production from the corpus luteum at approximately day 50 after conception (gestational week 7). Understanding the observed variability of the vaginal microbiota throughout pregnancy will allow for future comparison of ewes that did not become pregnant or had abnormal pregnancies, which could lead to the discovery of potential bacterial biomarkers for pregnancy outcome; this understanding could also lead to development of probiotics to improve sheep reproductive success.

3.
Am J Vet Res ; 85(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38325002

ABSTRACT

OBJECTIVE: This study aimed to characterize the bacterial and eukaryotic microbiota of the gastrointestinal (GI) tract in domestic rabbits and to evaluate the effect of different diet characteristics, such as pelleting, extrusion, and hay supplementation. ANIMALS: 30 New Zealand White rabbits (15 male and 15 female; 6 to 7 months old) were fed 1 of 6 diets (5 rabbits per diet) for 30 days after an initial acclimation period. At the end of the trial, samples were collected from the stomach, small intestine, cecum, large intestine, and hard feces. METHODS: The samples were analyzed using 16S rRNA and internal transcribed spacer 1 region-targeted amplicon sequencing. RESULTS: The bacterial microbiota was distinct between the foregut and hindgut. The most abundant bacterial genera included an unclassified genus in the Bacteroidales order and Alistipes. Candida was the most abundant genus in the eukaryotic dataset. In the bacterial dataset, diet No Hay/Pellet E was shown to have lower diversity (Shannon diversity, P < .05) compared to all diet groups except for No Hay/Pellet M. Few significant differences in alpha-diversity indexes between diet groups were detected in the eukaryotic dataset. CLINICAL RELEVANCE: Our findings demonstrated that feeding hay had a significant effect on the beta diversity of the bacterial microbiota. Given the prevalence of gastrointestinal disease in the domestic rabbit population, furthering our understanding of what constitutes a healthy rabbit microbiota and the effects of different diets on the microbial community can help veterinarians implement better intervention strategies and allow pet owners to provide the best level of care.


Subject(s)
Gastrointestinal Tract , Microbiota , Rabbits , Animals , Female , Male , RNA, Ribosomal, 16S/genetics , Diet/veterinary , Cecum , Bacteria/genetics , Animal Feed/analysis , Feces/microbiology
4.
Front Vet Sci ; 11: 1334858, 2024.
Article in English | MEDLINE | ID: mdl-38352039

ABSTRACT

Introduction: Brucella abortus is the causative agent of brucellosis in cattle and in humans, resulting in economic losses in the agricultural sector and representing a major threat to public health. Elk populations in the American Northwest are reservoirs for this bacterium and transmit the agent to domestic cattle herds. One potential strategy to mitigate the transmission of brucellosis by elk is vaccination of elk populations against B. abortus; however, elk appear to be immunologically distinct from cattle in their responses to current vaccination strategies. The differences in host response to B. abortus between cattle and elk could be attributed to differences between the cattle and elk innate and adaptive immune responses. Because species-specific interactions between the host microbiome and the immune system are also known to affect immunity, we sought to investigate interactions between the elk microbiome and B. abortus infection and vaccination. Methods: We analyzed the fecal and vaginal microbial communities of B. abortus-vaccinated and unvaccinated elk which were challenged with B. abortus during the periparturient period. Results: We observed that the elk fecal and vaginal microbiota are similar to those of other ruminants, and these microbial communities were affected both by time of sampling and by vaccination status. Notably, we observed that taxa representing ruminant reproductive tract pathogens tended to increase in abundance in the elk vaginal microbiome following parturition. Furthermore, many of these taxa differed significantly in abundance depending on vaccination status, indicating that vaccination against B. abortus affects the elk vaginal microbiota with potential implications for animal reproductive health. Discussion: This study is the first to analyze the vaginal microbiota of any species of the genus Cervus and is also the first to assess the effects of B. abortus vaccination and challenge on the vaginal microbiome.

5.
Microbiol Resour Announc ; 12(10): e0012823, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37655879

ABSTRACT

We report the complete genome sequences of two non-typical Avibacterium paragallinarum (AP) strains isolated from chickens in the absence of clinical signs. The availability of these genomes can aid scientists in improving current diagnostics and increase our understanding of AP epidemiology and pathogenicity in chickens.

6.
Microbiol Resour Announc ; 12(10): e0075023, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37768047

ABSTRACT

We performed Oxford Nanopore and Illumina sequencing to generate accurate, closed genomes for the Listeria monocytogenes strains 6179 and L58-55. The new assemblies were generally similar to the previous Illumina-based assemblies, but additional rRNA operons and repeat regions were identified in the new assembly for strain 6179.

7.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36511453

ABSTRACT

The effect of a saccharin-based artificial sweetener was tested on animal performance measures and on the microbial communities associated with the rumen content and with the rumen epithelium during heat stress. Ten cannulated Holstein-Friesian milking dairy cattle were supplemented with 2 g of saccharin-based sweetener per day, top-dressed into individual feeders for a 7-day adaptation period followed by a 14-day heat stress period. A control group of ten additional cows subjected to the same environmental conditions but not supplemented with sweetener were included for comparison. 16S rRNA gene amplicon sequencing was performed on rumen content and rumen epithelium samples from all animals, and comparisons of rumen content microbiota and rumen epithelial microbiota were made between supplemented and control populations. Supplementation of the saccharin-based sweetener did not affect the rumen content microbiota, but differences in the rumen epithelial microbiota beta-diversity (PERMANOVA, P = 0.003, R2 = 0.12) and alpha-diversity (Chao species richness, P = 0.06 and Shannon diversity, P = 0.034) were detected between the supplemented and control experimental groups. Despite the changes detected in the microbial community, animal performance metrics including feed intake, milk yield, and short-chain fatty acid (acetic, propionic, and butyric acid) concentrations were not different between experimental groups. Thus, under the conditions applied, supplementation with a saccharin-based sweetener does not appear to affect animal performance under heat stress. Additionally, we detected differences in the rumen epithelial microbiota due to heat stress when comparing initial, prestressed microbial communities to the communities after heat stress. Importantly, the changes occurring in the rumen epithelial microbiota may have implications on barrier integrity, oxygen scavenging, and urease activity. This research adds insight into the impact of saccharin-based sweeteners on the rumen microbiota and the responsivity of the rumen epithelial microbiota to different stimuli, providing novel hypotheses for future research.


Mitigating the effects of heat stress is becoming more and more important with global increases in temperatures. Heat stress negatively affects livestock health and performance. One way to mitigate the effects of heat stress on livestock is to increase feed intake during stress conditions by enhancing palatability of the feed by adding artificial sweeteners. In this study, we investigated whether supplementation of the diet with a saccharin-based sweetener affected dairy cattle performance and the rumen microbial communities during heat stress. We show that supplementation with a saccharin-based artificial sweetener did not affect the performance of the dairy cattle during heat stress. However, the sweetener resulted in changes in the rumen microbial communities, particularly of the microbial communities attached to the rumen wall. These changes in the rumen wall microbial communities could potentially have implications for the host animal, for example in the integrity of the rumen wall barrier function. Future research will be needed to better understand the role of artificial sweeteners in potentially mitigating stress conditions for livestock and to understand their potential effects on microbial communities.


Subject(s)
Diet , Microbiota , Female , Cattle , Animals , Diet/veterinary , Lactation , Saccharin , Sweetening Agents/pharmacology , Rumen/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Animal Feed/analysis , Milk , Epithelium , Sodium , Fermentation
8.
Front Microbiol ; 13: 1001139, 2022.
Article in English | MEDLINE | ID: mdl-36386708

ABSTRACT

Soft rot disease causes devastating losses to crop plants all over the world, with up to 90% loss in tropical climates. To better understand this economically important disease, we isolated four soft rot-causing Erwinia persicina strains from rotted vegetables. Notably, E. persicina has only recently been identified as a soft rot pathogen and a comprehensive genomic analysis and comparison has yet to be conducted. Here, we provide the first genomic analysis of E. persicina, compared to Pectobacterium carotovorum, P. carotovorum, and associated Erwinia plant pathogens. We found that E. persicina shares common genomic features with other Erwinia species and P. carotovorum, while having its own unique characteristics as well. The E. persicina strains examined here lack Type II and Type III secretion systems, commonly used to secrete pectolytic enzymes and evade the host immune response, respectively. E. persicina contains fewer putative pectolytic enzymes than P. carotovorum and lacks the Out cluster of the Type II secretion system while harboring a siderophore that causes a unique pink pigmentation during soft rot infections. Interestingly, a putative phenolic acid decarboxylase is present in the E. persicina strains and some soft rot pathogens, but absent in other Erwinia species, thus potentially providing an important factor for soft rot. All four E. persicina isolates obtained here and many other E. persicina genomes contain plasmids larger than 100 kbp that encode proteins likely important for adaptation to plant hosts. This research provides new insights into the possible mechanisms of soft rot disease by E. persicina and potential targets for diagnostic tools and control measures.

9.
Microbiologyopen ; 11(5): e1315, 2022 10.
Article in English | MEDLINE | ID: mdl-36314750

ABSTRACT

Recent research demonstrated that some Listeria monocytogenes plasmids contribute to stress survival. However, only a few studies have analyzed gene expression patterns of L. monocytogenes plasmids. In this study, we identified four previously published stress-response-associated transcriptomic data sets which studied plasmid-harboring L. monocytogenes strains but did not include an analysis of the plasmid transcriptomes. The four transcriptome data sets encompass three distinct plasmids from three different L. monocytogenes strains. Differential gene expression analysis of these plasmids revealed that the number of differentially expressed (DE) L. monocytogenes plasmid genes ranged from 30 to 45 with log2 fold changes of -2.2 to 6.8, depending on the plasmid. Genes often found to be DE included the cadmium resistance genes cadA and cadC, a gene encoding a putative NADH peroxidase, the putative ultraviolet resistance gene uvrX, and several uncharacterized noncoding RNAs (ncRNAs). Plasmid-encoded ncRNAs were consistently among the highest expressed genes. In addition, one of the data sets utilized the same experimental conditions for two different strains harboring distinct plasmids. We found that the gene expression patterns of these two L. monocytogenes plasmids were highly divergent despite the identical treatments. These data suggest plasmid-specific gene expression responses to environmental stimuli and differential plasmid regulation mechanisms between L. monocytogenes strains. Our findings further our understanding of the dynamic expression of L. monocytogenes plasmid-encoded genes in diverse environmental conditions and highlight the need to expand the study of L. monocytogenes plasmid genes' functions.


Subject(s)
Listeria monocytogenes , Listeria monocytogenes/genetics , Transcriptome , Plasmids/genetics , Cadmium
10.
Front Microbiol ; 13: 866930, 2022.
Article in English | MEDLINE | ID: mdl-35923389

ABSTRACT

The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.

11.
Microbiol Resour Announc ; 11(9): e0070122, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35993702

ABSTRACT

Two Pseudomonas strains (SR17 and SR18) were isolated from soft rot-diseased spinach leaves. Here, we report their genome sequences and characteristics.

12.
Transl Anim Sci ; 6(2): txac047, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35663613

ABSTRACT

Forty sows (PIC Camborough 1050) from a single farm were randomly selected at 112 days of gestation to evaluate if gut bacteria transverse the blood system of the sow to deposit gut microbiota into the colostrum for piglet gut inoculation via the entero-mammary pathway. Fourteen first-parity gilts and 20 third-parity sows were used for the study. At the time of farrowing, colostrum, fecal samples, and blood samples were collected to evaluate the presence of bacteria in each sample. Colostrum and blood samples were processed via centrifugation to separate the immune cell fraction. Total DNA was extracted from fecal, colostrum, and white blood cell fractions. 16S ribosomal RNA gene amplicon sequencing was conducted at the Iowa State University DNA Facility (Ames, IA) to further characterize the bacterial and archaeal taxa present within each sample. Data were analyzed using Mothur and using R v4.0.3 (R Core Team, 2020). The experimental unit was the sow. Tables were generated to demonstrate the relative abundances of bacteria and archaea present in each type of sample and also identify organisms differentially abundant between sample types. Firmicutes were the most abundant phylum in colostrum and fecal samples and Tenericutes had the greatest abundance in blood comparative to other phyla. Further evaluation of the classification of bacteria present demonstrated that a few genera of bacteria are present in all three samples. Clostridum_sensu_stricto 1 was present in high relative abundance in colostrum and moderate abundance in the feces while also being present within the blood. Other genera present in all three sample types include Ruminococcus and Mycoplasma. In conclusion, the data suggest that there are bacteria present in all three locations of the sow at the time of farrowing and that first parity sows have different microbial populations than third parity sows.

13.
Front Microbiol ; 13: 813480, 2022.
Article in English | MEDLINE | ID: mdl-35300479

ABSTRACT

Vorarlberger Bergkäse (VB) is an artisanal Austrian washed-rind hard cheese produced from alpine cows' raw milk without the addition of ripening cultures. Ripening time is a key factor in VB, as it strongly influences the microbial communities present in the cheeses and the organoleptic properties of the product. In this study, the microbial and metabolic transcriptional profiles in VB rinds at different ripening times were investigated. VB products before (30 days of ripening) and after (90 days of ripening) selling were selected, RNA was extracted and subjected to shotgun metatranscriptomic sequencing. The analysis revealed some of the previously described abundant bacterial taxa of Brevibacterium, Corynebacterium, Halomonas, Psychrobacter, and Staphylococcus to be highly active in VB rinds. Additionally, the investigation of most important metabolic pathways in cheese ripening clearly showed differences in the gene transcription profiles and the active microbiota between the two ripening points investigated. At 30 days of ripening, metabolic events related with the degradation of residual lactose, lactate, citrate, proteolysis, and lipolysis were significantly more transcribed and mainly associated with Staphylococcus. On the other hand, genes involved in the degradation of smaller compounds derived from previous metabolism (i.e., metabolism of free amino acids and fatty acids) were significantly more expressed in VB rinds with 90 of ripening, and mainly associated with Brevibacterium and Corynebacterium. These latter metabolic activities are responsible of the generation of compounds, such as methanethiol and 2,3-butanediol, that are very important for the flavor and aroma characteristics of cheeses. This study shows the dynamic changes in the gene transcriptional profiles associated with energy substrates metabolism and the generation of organoleptic compounds during VB ripening and uncovers bacterial taxa as key drivers of the ripening process. These taxa might be the target for future studies toward an accelerated cheese ripening and the enhancement of its organoleptic properties.

14.
Heredity (Edinb) ; 128(3): 187-195, 2022 03.
Article in English | MEDLINE | ID: mdl-35124699

ABSTRACT

Cytoplasmic incompatibility (CI) is a common form of reproductive sabotage caused by maternally inherited bacterial symbionts of arthropods. CI is a two-step manipulation: first, the symbiont modifies sperm in male hosts which results in the death of fertilized, uninfected embryos. Second, when females are infected with a compatible strain, the symbiont reverses sperm modification in the fertilized egg, allowing offspring of infected females to survive and spread the symbiont to high frequencies in a population. Although CI plays a role in arthropod evolution, the mechanism of CI is unknown for many symbionts. Cardinium hertigii is a common CI-inducing symbiont of arthropods, including parasitoid wasps like Encarsia partenopea. This wasp harbors two Cardinium strains, cEina2 and cEina3, and exhibits strong CI. The strains infect wasps at different densities, with the cEina3 present at a lower density than cEina2, and it was previously not known which strain caused CI. By differentially curing wasps of cEina3, we found that this low-density symbiont is responsible for CI and modifies males during their pupal stage. cEina2 does not modify host reproduction and may spread by 'hitchhiking' with cEina3 CI or by conferring an unknown benefit. The cEina3 strain also shows a unique localization pattern in male reproductive tissues. Instead of infecting sperm like other CI-inducing symbionts, cEina3 cells are found in somatic cells at the testis base and around the seminal vesicle. This may allow the low-density cEina3 to efficiently modify host males and suggests that cEina3 uses a different modification strategy than sperm-infecting CI symbionts.


Subject(s)
Wasps , Wolbachia , Animals , Bacteroidetes/genetics , Cytoplasm/microbiology , Female , Male , Reproduction , Symbiosis , Wasps/genetics , Wasps/microbiology
15.
Microbiol Resour Announc ; 11(1): e0106621, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35049346

ABSTRACT

Eleven Pectobacterium strains were isolated from soft rot-diseased vegetables. Here, we report their genome sequences and characteristics. Five isolates were found to be Pectobacterium versatile, while the other six were determined to be Pectobacterium brasiliense.

16.
Front Microbiol ; 13: 1086058, 2022.
Article in English | MEDLINE | ID: mdl-36605506

ABSTRACT

To contribute to the conservation of endangered animals, the utilization of model systems is critical to analyze the function of their gut microbiota. In this study, the results of a fecal microbial transplantation (FMT) experiment with germ-free (GF) mice receiving giant panda or horse fecal microbiota showed a clear clustering by donor microbial communities in GF mice, which was consistent with the results of blood metabolites from these mice. At the genus level, FMT re-established approximately 9% of the giant panda donor microbiota in GF mice compared to about 32% for the horse donor microbiota. In line with this, the difference between the panda donor microbiota and panda-mice microbiota on whole-community level was significantly larger than that between the horse donor microbiota and the horse-mice microbiota. These results were consistent with source tracking analysis that found a significantly higher retention rate of the horse donor microbiota (30.9%) than the giant panda donor microbiota (4.0%) in GF mice where the microbiota remained stable after FMT. Further analyzes indicated that the possible reason for the low retention rate of the panda donor microbiota in GF mice was a low relative abundance of Clostridiaceae in the panda donor microbiota. Our results indicate that the donor microbiota has a large effect on GF mice microbiota after FMT.

17.
GigaByte ; 2022: gigabyte68, 2022.
Article in English | MEDLINE | ID: mdl-36824530

ABSTRACT

Parasitoid wasps in the genus Encarsia are commonly used as biological pest control agents of whiteflies and armored scale insects in greenhouses or the field. They are also hosts of the bacterial endosymbiont Cardinium hertigii, which can cause reproductive manipulation phenotypes, including parthenogenesis, feminization, and cytoplasmic incompatibility (the last is mainly studied in Encarsia suzannae). Despite their biological and economic importance, there are no published Encarsia genomes and only one public transcriptome. Here, we applied a mapping-and-removal approach to eliminate known contaminants from previously-obtained Illumina sequencing data. We generated de novo transcriptome assemblies for both female and male E. suzannae which contain 45,986 and 54,762 final coding sequences, respectively. Benchmarking Single-Copy Orthologs results indicate both assemblies are highly complete. Preliminary analyses revealed the presence of homologs of sex-determination genes characterized in other insects and putative venom proteins. Our male and female transcriptomes will be valuable tools to better understand the biology of Encarsia and their evolutionary relatives, particularly in studies involving insects of only one sex.

18.
Animals (Basel) ; 13(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36611664

ABSTRACT

The objective was to determine the impact of feeding MCE on ruminal and intestinal morphology and microbiota composition of calves. A total of 10 male and 10 female crossbred (dairy × beef) calves (6 d of age) were assigned randomly to control (CTL; n = 10) or MCE-supplemented (TRT; n = 10) groups. The MCE was fed in the milk replacer and top-dressed on the calf starter during pre-weaning (6 to 49 d) and post-weaning (50 to 95 d) periods, respectively. Calves were slaughtered at 95 d to collect rumen and intestinal samples to determine volatile fatty acid (VFA) profile, mucosal morphology, and microbiota composition. The effects of MCE were analyzed by accounting for the sex and breed effects. Feeding MCE increased rumen papillae length (p = 0.010) and intestinal villus height: crypt depth (p < 0.030) compared to CTL but did not affect rumen VFA profile. The TRT had a negligible impact on microbial community composition in both the rumen and the jejunum. In conclusion, feeding MCE from birth through weaning can improve ruminal and small intestinal mucosa development of calves despite the negligible microbiota composition changes observed post-weaning.

19.
Front Microbiol ; 12: 745884, 2021.
Article in English | MEDLINE | ID: mdl-34745049

ABSTRACT

Reproductive performance is paramount to the success of livestock production enterprises focused on lamb meat production. Reproductive success is influenced by various factors, possibly including the reproductive tract microbial communities present at the time of copulation and throughout pregnancy. There are few publications that identify the vaginal microbial communities of livestock, and even fewer exist for sheep. To compare ewe vaginal microbial communities, vaginal swabs were taken from 67 Hampshire and Hampshire X Suffolk crossbred ewes from the Iowa State University sheep farm at a pre-breeding time point (S1) and after pregnancy testing (S2). Animals that were determined pregnant were sampled again within a few days of expected parturition (S3). DNA was extracted from these swabs, and 16S rRNA gene Illumina MiSeq amplicon sequencing was conducted to fingerprint the bacterial communities found within this system. Pre-breeding time point samples showed no differences in community structure between animals later found to be pregnant or non-pregnant, but significant changes were detected in species richness (Chao; P < 0.001) and species diversity (Shannon; P < 0.001) at the second sampling time point. A higher microbial diversity within the S2 time point samples may suggest a more stable environment driven by pregnancy, as this increased diversity is maintained in pregnant animals from the S2 to the S3 time point. Additionally, several bacterial phylotypes, such as Mannheimia, Oscillospiraceae-like OTUs and Alistipes, were more abundant at either the S1 or S2 time points in animals that established pregnancy, suggesting a beneficial effect on pregnancy outcome. This study identifies changes within the microbial communities of the ewe vagina before and during gestation and offers inferences on how these changes may impact pregnancy outcome. Information presented herein offers new knowledge about sheep vaginal microbial communities and serves as a starting point to help guide researchers to improve sheep reproductive performance in the future.

20.
Biol Reprod ; 105(6): 1545-1561, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34542158

ABSTRACT

During the last decade, sow mortality due to pelvic organ prolapse (POP) has increased. To better understand the biology associated with POP, sows were phenotypically assessed and assigned a perineal score (PS) based on presumed POP risk and categorized as PS1 (low), PS2 (moderate), or PS3 (high). The study objective was to identify changes in sow vaginal microbiota that may be associated with POP. The hypothesis is that vaginal microbiota differs between sows with variable risk for POP, and changes in microbiota during late gestation exist between sows with differing risk. Of the 2864 sows scored during gestation week 15, 1.0, 2.7, and 23.4% of PS1, PS2, and PS3 sows, respectively, subsequently experienced POP. Vaginal swabs subjected to 16S rRNA gene sequencing revealed differences in community composition (Bray-Curtis; P < 0.05) and individual operational taxonomic unit (OTU) comparisons between vaginal microbiota of PS1 and PS3 sows at gestation week 15. Further, differences (P < 0.05) in community composition and OTUs (Q < 0.05) were observed in PS3 sows that either did or did not subsequently experience POP. Differences in community structure (alpha diversity measurements; P < 0.05), composition (P < 0.05), and OTUs (Q < 0.05) were observed in gestation week 12 sows scored PS1 compared to week 15 sows scored PS1 or PS3, suggesting that sow vaginal microbiota shifts during late gestation differently as POP risk changes. Collectively, these data demonstrate that sows with greater POP risk have unique vaginal microflora, for which a better understanding could aid in the development of mitigation strategies.


Subject(s)
Microbiota , Pelvic Organ Prolapse/veterinary , Swine Diseases/etiology , Vagina/microbiology , Animals , Female , Gestational Age , Pelvic Organ Prolapse/etiology , Pelvic Organ Prolapse/microbiology , Pregnancy , Sus scrofa , Swine , Swine Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...