Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 15(1): 5449, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937456

ABSTRACT

Progressive lung fibrosis is associated with poorly understood aging-related endothelial cell dysfunction. To gain insight into endothelial cell alterations in lung fibrosis we performed single cell RNA-sequencing of bleomycin-injured lungs from young and aged mice. Analysis reveals activated cell states enriched for hypoxia, glycolysis and YAP/TAZ activity in ACKR1+ venous and TrkB+ capillary endothelial cells. Endothelial cell activation is prevalent in lungs of aged mice and can also be detected in human fibrotic lungs. Longitudinal single cell RNA-sequencing combined with lineage tracing demonstrate that endothelial activation resolves in young mouse lungs but persists in aged ones, indicating a failure of the aged vasculature to return to quiescence. Genes associated with activated lung endothelial cells states in vivo can be induced in vitro by activating YAP/TAZ. YAP/TAZ also cooperate with BDNF, a TrkB ligand that is reduced in fibrotic lungs, to promote capillary morphogenesis. These findings offer insights into aging-related lung endothelial cell dysfunction that may contribute to defective lung injury repair and persistent fibrosis.


Subject(s)
Aging , Bleomycin , Endothelial Cells , Lung Injury , Lung , Pulmonary Fibrosis , Animals , Endothelial Cells/metabolism , Endothelial Cells/pathology , Aging/pathology , Bleomycin/toxicity , Humans , Mice , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/genetics , Lung/pathology , Lung/metabolism , Lung Injury/pathology , Lung Injury/metabolism , Lung Injury/etiology , Receptor, trkB/metabolism , Receptor, trkB/genetics , Mice, Inbred C57BL , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , YAP-Signaling Proteins/metabolism , Male , Single-Cell Analysis , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Female , Disease Models, Animal
2.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36712020

ABSTRACT

Lung regeneration deteriorates with aging leading to increased susceptibility to pathologic conditions, including fibrosis. Here, we investigated bleomycin-induced lung injury responses in young and aged mice at single-cell resolution to gain insights into the cellular and molecular contributions of aging to fibrosis. Analysis of 52,542 cells in young (8 weeks) and aged (72 weeks) mice identified 15 cellular clusters, many of which exhibited distinct injury responses that associated with age. We identified Pdgfra + alveolar fibroblasts as a major source of collagen expression following bleomycin challenge, with those from aged lungs exhibiting a more persistent activation compared to young ones. We also observed age-associated transcriptional abnormalities affecting lung progenitor cells, including ATII pneumocytes and general capillary (gCap) endothelial cells (ECs). Transcriptional analysis combined with lineage tracing identified a sub-population of gCap ECs marked by the expression of Tropomyosin Receptor Kinase B (TrkB) that appeared in bleomycin-injured lungs and accumulated with aging. This newly emerged TrkB + EC population expressed common gCap EC markers but also exhibited a distinct gene expression signature associated with aberrant YAP/TAZ signaling, mitochondrial dysfunction, and hypoxia. Finally, we defined ACKR1 + venous ECs that exclusively emerged in injured lungs of aged animals and were closely associated with areas of collagen deposition and inflammation. Immunostaining and FACS analysis of human IPF lungs demonstrated that ACKR1 + venous ECs were dominant cells within the fibrotic regions and accumulated in areas of myofibroblast aggregation. Together, these data provide high-resolution insights into the impact of aging on lung cell adaptability to injury responses.

SELECTION OF CITATIONS
SEARCH DETAIL
...