Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 16(2): e202202161, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36445782

ABSTRACT

Aqueous processing of Ni-rich layered oxide cathode materials is a promising approach to simultaneously decrease electrode manufacturing costs, while bringing environmental benefits by substituting the state-of-the-art (often toxic and costly) organic processing solvents. However, an aqueous environment remains challenging due to the high reactivity of Ni-rich layered oxides towards moisture, leading to lithium leaching and Al current collector corrosion because of the resulting high pH value of the aqueous electrode paste. Herein, a facile method was developed to enable aqueous processing of LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) by the addition of lithium sulfate (Li2 SO4 ) during electrode paste dispersion. The aqueously processed electrodes retained 80 % of their initial capacity after 400 cycles in NCM811||graphite full cells, while electrodes processed without the addition of Li2 SO4 reached 80 % of their capacity after only 200 cycles. Furthermore, with regard to electrochemical performance, aqueously processed electrodes using carbon-coated Al current collector outperformed reference electrodes based on state-of-the-art production processes involving N-methyl-2-pyrrolidone as processing solvent and fluorinated binders. The positive impact on cycle life by the addition of Li2 SO4 stemmed from a formed sulfate coating as well as different surface species, protecting the NCM811 surface against degradation. Results reported herein open a new avenue for the processing of Ni-rich NCM electrodes using more sustainable aqueous routes.

2.
ACS Appl Mater Interfaces ; 14(30): 34665-34677, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35880313

ABSTRACT

We report the performance of a conversion-type magnetite-decorated partially reduced graphene oxide (Fe3O4@PrGO) negative electrode material in full-cell configuration with LiNi0.8Co0.15Al0.05O2 (NCA) positive electrodes. To enable practical implementation of the conversion-type negative electrodes in full cells, the beneficial impact of electrochemical prelithiation on mitigating active lithium losses and improving cycle life is shown here for the first time in the literature. The initial Coulombic efficiency (ICE) of the full cells is improved from 70.8 to 91.2% by prelithiation of the negative electrode to 35% of its specific delithiation capacity. The prelithiation is shown to improve the surface passivation of the Fe3O4@PrGO electrodes, leading to less electrolyte reduction on their surface which is prominent from the significantly lowered accumulated Coulombic inefficiency values, lower polarization growth, and doubled capacity retention by the 100th cycle. The reduced surface reactions of the negative electrode by prelithiation also aids in reducing the extent of aging of the NCA positive electrode. Overall, the prelithiation leads to a longer cycle life, where a retained capacity of 60.4% was achieved for the prelithiated cells by the end of long-term cycling, which is 3 times higher than the capacity retention of the non-prelithiated cells. Results reported herein indicate for the first time that the electrochemical prelithiation of the Fe3O4@PrGO electrode is a promising approach for making conversion negative electrode materials more applicable in lithium-ion batteries.

3.
ChemSusChem ; 15(11): e202200401, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35333434

ABSTRACT

Ni-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium-ion batteries for automotive applications. Aqueous processing of such materials, although desirable to reduce costs and improve sustainability, remains challenging due to the Li+ /H+ exchange upon contact with water, resulting in a pH increase and corrosion of the aluminum current collector. Herein, an example was given for tuning the properties of aqueous LiNi0.83 Co0.12 Mn0.05 O2 electrode pastes using a lithium polyacrylate-based binder to find the "sweet spot" for processing parameters and electrochemical performance. Polyacrylic acid was partially neutralized to balance high initial capacity, good cycling stability, and the prevention of aluminum corrosion. Optimized LiOH/polyacrylic acid ratios in water were identified, showing comparable cycling performance to electrodes processed with polyvinylidene difluoride requiring toxic N-methyl-2-pyrrolidone as solvent. This work gives an exemplary study for tuning aqueous electrode pastes properties aiming towards a more environmentally friendly processing of Ni-rich cathodes.

4.
ChemSusChem ; 15(4): e202200078, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35099111

ABSTRACT

Invited for this month's cover is a combined work of the Helmholtz Institute Münster together with the MEET Battery Research Center and the Universities of Münster and Mainz. The cover shows multiple treatment choices for the modification of cathode active materials for lithium-ion batteries. Similar to a car wash program, the treatment will typically result in an improvement of the status quo. However, the best treatment procedure will only become clear if all modification pathways are explored. The Research Article itself is available at 10.1002/cssc.202102220.

5.
ChemSusChem ; 15(4): e202102220, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-34784118

ABSTRACT

Ni-rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium-ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution ("doping") and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2 WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel-cobalt-manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both.

6.
ACS Appl Mater Interfaces ; 11(20): 18404-18414, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31046233

ABSTRACT

Ni-rich NCM-based positive electrode materials exhibit appealing properties in terms of high energy density and low cost. However, these materials suffer from different degradation effects, especially at their particle surface. Therefore, in this work, tungsten oxide is evaluated as a protective inorganic coating layer on LiNi0.8Co0.1Mn0.1O2 (NCM-811) positive electrode materials for lithium-ion battery (LIB) cells and investigated regarding rate capability and cycling stability under different operation conditions. Using electrochemical impedance spectroscopy, the interfacial resistance of uncoated and coated NCM-811 electrodes is explored to study the impact of the coating on lithium-ion diffusion. All electrochemical investigations are carried out in LIB full cells with graphite as a negative electrode to ensure better comparability with commercial cells. The coated electrodes show an excellent capacity retention for the long-term charge/discharge cycling of NCM-811-based LIB full cells, i.e., 80% state-of-health after more than 800 cycles. Furthermore, the positive influence of the tungsten oxide coating on the thermal and structural stability is demonstrated using postmortem analysis of aged electrodes. Compared to the uncoated electrodes, the surface-modified electrodes show less degradation effects, such as particle cracking on the electrode surface and improvement of the thermal stability of NCM-811 in the presence of electrolyte.

SELECTION OF CITATIONS
SEARCH DETAIL
...