Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(4): 042003, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33155576

ABSTRACT

This roadmap on Nanotechnology for Catalysis and Solar Energy Conversion focuses on the application of nanotechnology in addressing the current challenges of energy conversion: 'high efficiency, stability, safety, and the potential for low-cost/scalable manufacturing' to quote from the contributed article by Nathan Lewis. This roadmap focuses on solar-to-fuel conversion, solar water splitting, solar photovoltaics and bio-catalysis. It includes dye-sensitized solar cells (DSSCs), perovskite solar cells, and organic photovoltaics. Smart engineering of colloidal quantum materials and nanostructured electrodes will improve solar-to-fuel conversion efficiency, as described in the articles by Waiskopf and Banin and Meyer. Semiconductor nanoparticles will also improve solar energy conversion efficiency, as discussed by Boschloo et al in their article on DSSCs. Perovskite solar cells have advanced rapidly in recent years, including new ideas on 2D and 3D hybrid halide perovskites, as described by Spanopoulos et al 'Next generation' solar cells using multiple exciton generation (MEG) from hot carriers, described in the article by Nozik and Beard, could lead to remarkable improvement in photovoltaic efficiency by using quantization effects in semiconductor nanostructures (quantum dots, wires or wells). These challenges will not be met without simultaneous improvement in nanoscale characterization methods. Terahertz spectroscopy, discussed in the article by Milot et al is one example of a method that is overcoming the difficulties associated with nanoscale materials characterization by avoiding electrical contacts to nanoparticles, allowing characterization during device operation, and enabling characterization of a single nanoparticle. Besides experimental advances, computational science is also meeting the challenges of nanomaterials synthesis. The article by Kohlstedt and Schatz discusses the computational frameworks being used to predict structure-property relationships in materials and devices, including machine learning methods, with an emphasis on organic photovoltaics. The contribution by Megarity and Armstrong presents the 'electrochemical leaf' for improvements in electrochemistry and beyond. In addition, biohybrid approaches can take advantage of efficient and specific enzyme catalysts. These articles present the nanoscience and technology at the forefront of renewable energy development that will have significant benefits to society.

2.
Phys Chem Chem Phys ; 16(31): 16629-41, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24993024

ABSTRACT

An efficient synthetic protocol to functionalize the cyanoacrylic acid anchoring group of commercially available MK-2 dye with a highly water-stable hydroxamate anchoring group is described. Extensive characterization of this hydroxamate-modified dye (MK-2HA) reveals that the modification does not affect its favorable optoelectronic properties. Dye-sensitized solar cells (DSSCs) prepared with the MK-2HA dye attain improved efficiency (6.9%), relative to analogously prepared devices with commercial MK-2 and N719 dyes. The hydroxamate anchoring group also contributes to significantly increased water stability, with a decrease in the rate constant for dye desorption of MK-2HA relative to MK-2 in the presence of water by as much as 37.5%. In addition, the hydroxamate-anchored dye undergoes essentially no loss in DSSC efficiency and the external quantum efficiency improves when up to 20% water is purposefully added to the electrolyte. In contrast, devices prepared with the commercial dye suffer a 50% decline in efficiency under identical conditions, with a concomitant decrease in external quantum efficiency. Collectively, our results indicate that covalent functionalization of organic dyes with hydroxamate anchoring groups is a simple and efficient approach to improving the water stability of the dye-semiconductor interface and overall device durability.

3.
Rev Sci Instrum ; 78(8): 086111, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17764371

ABSTRACT

We report the performance of a niobium hot-electron bolometer designed for laboratory terahertz spectroscopy. The antenna-coupled detector can operate above 4.2 K and has fast (subnanosecond) response. Detailed microwave measurements of performance over a wide range of operating conditions were correlated with quantitative terahertz measurements. The maximum responsivity is 4 x 10(4) VW with a noise equivalent power at the detector of 2 x 10(-14) W/Hz(12), approaching the intrinsic thermal fluctuation limit for the device. This detector enables a variety of novel laboratory spectroscopy measurements.


Subject(s)
Microwaves , Niobium/chemistry , Spectrophotometry, Infrared/instrumentation , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry, Infrared/methods
4.
Chem Phys Lett ; 226(1-2): 22-6, 1994 Aug 12.
Article in English | MEDLINE | ID: mdl-11539419

ABSTRACT

We have calculated state-to-state total cross sections for rotational excitation and inversion of NH3 by collisions with Ar using the close coupling method. The Ar-NH3 interaction potential has been obtained from a fit to the spectrum of this van der Waals molecule. The calculated cross sections agree to within about 30% with the measured values; the estimated error in the latter is 10% to 20%.


Subject(s)
Ammonia/chemistry , Argon/chemistry , Models, Molecular , Software , Physical Phenomena , Physics
5.
Science ; 249: 897-900, 1990 Aug 24.
Article in English | MEDLINE | ID: mdl-11538082

ABSTRACT

Seven rovibrational transitions of the (01(1)0) <-- (00(0)0) fundamental bending band of C3 have been measured with high precision with the use of a tunable far-infrared laser spectrometer. The C3 molecules were produced by laser vaporization of a graphite rod and cooled in a supersonic expansion. The astrophysically important nu 2 fundamental frequency is determined to be 63.416529(40) cm-1. These measurements provide the basis for studies of C3 in the interstellar medium with far-infrared astronomy.


Subject(s)
Astronomy/methods , Carbon/analysis , Solar System , Astronomy/instrumentation , Carbon/chemistry , Lasers , Spectrophotometry, Infrared , Spectrum Analysis
6.
Science ; 244: 564-6, 1989 May 05.
Article in English | MEDLINE | ID: mdl-11539817

ABSTRACT

A new spectroscopic experiment has been developed in which rovibrational transitions of supersonically cooled carbon clusters, which were produced by laser vaporization of graphite, have been measured by direct-absorption diode-laser spectroscopy. Thirty-six sequential rovibrational lines of the nu 3 band of the C5 carbon cluster have been measured with Doppler-limited resolution. The absorption spectrum is characteristic of a linear molecule with a center of symmetry. Least-squares analysis of the spectrum indicates an effective carbon-carbon bond length of 1.283 angstroms, in good agreement with ab initio quantum chemical calculations. This work confirms the detection of C5 in IRC + 10216 reported in the accompanying paper.


Subject(s)
Carbon/analysis , Lasers , Spectrum Analysis/methods , Astronomical Phenomena , Astronomy , Carbon/chemistry , Quantum Theory , Solar System
SELECTION OF CITATIONS
SEARCH DETAIL
...