Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Fly (Austin) ; 16(1): 128-151, 2022 12.
Article in English | MEDLINE | ID: mdl-35575031

ABSTRACT

The model organism Drosophila melanogaster has become a focal system for investigations of rapidly evolving genital morphology as well as the development and functions of insect reproductive structures. To follow up on a previous paper outlining unifying terminology for the structures of the male terminalia in this species, we offer here a detailed description of the female terminalia of D. melanogaster. Informative diagrams and micrographs are presented to provide a comprehensive overview of the external and internal reproductive structures of females. We propose a collection of terms and definitions to standardize the terminology associated with the female terminalia in D. melanogaster and we provide a correspondence table with the terms previously used. Unifying terminology for both males and females in this species will help to facilitate communication between various disciplines, as well as aid in synthesizing research across publications within a discipline that has historically focused principally on male features. Our efforts to refine and standardize the terminology should expand the utility of this important model system for addressing questions related to the development and evolution of animal genitalia, and morphology in general.


Subject(s)
Drosophila melanogaster , Genitalia , Animals , Female , Male
2.
Nat Med ; 27(12): 2099-2103, 2021 12.
Article in English | MEDLINE | ID: mdl-34893771

ABSTRACT

B-cell maturation antigen (BCMA) is a prominent tumor-associated target for chimeric antigen receptor (CAR)-T cell therapy in multiple myeloma (MM). Here, we describe the case of a patient with MM who was enrolled in the CARTITUDE-1 trial ( NCT03548207 ) and who developed a progressive movement disorder with features of parkinsonism approximately 3 months after ciltacabtagene autoleucel BCMA-targeted CAR-T cell infusion, associated with CAR-T cell persistence in the blood and cerebrospinal fluid, and basal ganglia lymphocytic infiltration. We show BCMA expression on neurons and astrocytes in the patient's basal ganglia. Public transcriptomic datasets further confirm BCMA RNA expression in the caudate of normal human brains, suggesting that this might be an on-target effect of anti-BCMA therapy. Given reports of three patients with grade 3 or higher parkinsonism on the phase 2 ciltacabtagene autoleucel trial and of grade 3 parkinsonism in the idecabtagene vicleucel package insert, our findings support close neurological monitoring of patients on BCMA-targeted T cell therapies.


Subject(s)
B-Cell Maturation Antigen/immunology , Immunotherapy, Adoptive/methods , Movement Disorders/therapy , Parkinsonian Disorders/therapy , Receptors, Chimeric Antigen/immunology , Humans
3.
Genome Biol Evol ; 6(10): 2786-98, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25267446

ABSTRACT

Transposable elements (TEs) are one of the most important features of genome architecture, so their evolution and relationship with host defense mechanisms have been topics of intense study, especially in model systems such as Drosophila melanogaster. Recently, a novel small RNA-based defense mechanism in animals called the Piwi-interacting RNA (piRNA) pathway was discovered to form an adaptive defense mechanism against TEs. To investigate the relationship between piRNA and TE content between strains of a species, we sequenced piRNAs from 16 inbred lines of D. melanogaster from the Drosophila Genetic Reference Panel. Instead of a global correlation of piRNA expression and TE content, we found evidence for a host response through de novo piRNA production from novel TE insertions. Although approximately 20% of novel TE insertions induced de novo piRNA production, the abundance of de novo piRNAs was low and did not markedly affect the global pool of ovarian piRNAs. Our results provide new insights into the evolution of TEs and the piRNA system in an important model organism.


Subject(s)
DNA Transposable Elements/genetics , Drosophila/genetics , RNA, Small Interfering/genetics , Selection, Genetic/genetics , Animals , Female , Male
4.
Spermatogenesis ; 2(3): 224-235, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-23087839

ABSTRACT

Among most animals with internal fertilization, females store sperm in specific regions of their reproductive tract for later use. Sperm storage enables prolonged fertility, physical and temporal separation of mating from fertilization and, when females mate with multiple males, opportunities for differential use of the various males' sperm. Thus, stored sperm move within the female reproductive tract as well as to several potential fates - fertilization, displacement by other sperm or ejection by the female. Drosophila melanogaster is a leading model system for elucidating both the mechanisms and evolutionary consequences of female sperm storage and differential male fertilization success. The prominence of Drosophila is due, in part, to the ability to examine processes influencing sperm movement and fate at several biological levels, from molecules to organ systems. In this review, we describe male and female factors, as well as their interactions, involved in female sperm storage and differential male fertilization success.

5.
PLoS Biol ; 9(11): e1001192, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22087073

ABSTRACT

Male Drosophila flies secrete seminal-fluid proteins that mediate proper sperm storage and fertilization, and that induce changes in female behavior. Females also produce reproductive-tract secretions, yet their contributions to postmating physiology are poorly understood. Large secretory cells line the female's spermathecae, a pair of sperm-storage organs. We identified the regulatory regions controlling transcription of two genes exclusively expressed in these spermathecal secretory cells (SSC): Spermathecal endopeptidase 1 (Send1), which is expressed in both unmated and mated females, and Spermathecal endopeptidase 2 (Send2), which is induced by mating. We used these regulatory sequences to perform precise genetic ablations of the SSC at distinct time points relative to mating. We show that the SSC are required for recruiting sperm to the spermathecae, but not for retaining sperm there. The SSC also act at a distance in the reproductive tract, in that their ablation: (1) reduces sperm motility in the female's other sperm-storage organ, the seminal receptacle; and (2) causes ovoviviparity--the retention and internal development of fertilized eggs. These results establish the reproductive functions of the SSC, shed light on the evolution of live birth, and open new avenues for studying and manipulating female fertility in insects.


Subject(s)
Reproduction/physiology , Spermatozoa/physiology , Animals , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Male , Reproduction/genetics , Sperm Motility/genetics , Sperm Motility/physiology , Spermatozoa/metabolism
6.
Mol Cell Biol ; 24(8): 3198-212, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15060144

ABSTRACT

Rrm3p is a 5'-to-3' DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.


Subject(s)
Cell Survival/physiology , DNA Helicases/metabolism , DNA Replication , Endonucleases , Genes, cdc , S Phase/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Cell Division/physiology , DNA Damage , DNA Helicases/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Phenotype , Rad51 Recombinase , Rad52 DNA Repair and Recombination Protein , Recombination, Genetic , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics
7.
Mol Cell ; 12(6): 1525-36, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14690605

ABSTRACT

The Saccharomyces cerevisiae RRM3 gene encodes a 5' to 3' DNA helicase. While replication of most of the yeast genome was not dependent upon Rrm3p, in its absence, replication forks paused and often broke at an estimated 1400 discrete sites, including tRNA genes, centromeres, inactive replication origins, and transcriptional silencers. These replication defects were associated with activation of the intra-S phase checkpoint. Activation of the checkpoint was critical for viability of rrm3Delta cells, especially at low temperatures. Each site whose replication was affected by Rrm3p is assembled into a nonnucleosomal protein-DNA complex. At tRNA genes and the silent mating type loci, disruption of these complexes eliminated dependence upon Rrm3p. These data indicate that the Rrm3p DNA helicase helps replication forks traverse protein-DNA complexes, naturally occurring impediments that are encountered in each S phase.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/metabolism , DNA Replication , DNA, Fungal/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Cell Survival , Centromere/metabolism , Macromolecular Substances , RNA, Transfer/genetics , Replication Origin , S Phase , Shelterin Complex , Silencer Elements, Transcriptional , Telomere-Binding Proteins/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...