Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 47(48): 17257-17265, 2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30488935

ABSTRACT

Fe2+ spin crossover (SCO) complexes with long-lived excited high-spin (HS) states are promising molecular switches. An enhanced kinetic stability of spin-state isomers can be expected to foster applications beyond the limits of cooperative SCO. In this study, we describe a new approach to slow down the spin-state exchange by simple commutation of a phenyl substituent by a pyridyl substituent. To this end, N4 ligand 6-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)-2,2'-bipyridine (3b) is synthesized as an N4 homologue of the well-established meridional N3 ligands motif. Phenyl-substituted 6-(3-phenyl-1H-pyrazol-1-yl)-2,2'-bipyridine (3a) serves as an intrinsic N3 reference throughout. 3b offers variable coordination numbers, N3 versus N3(+1) and N4, reflecting the preferences of the metal center. As is shown herein through an extended solid-state structure-chemical and solution-state NMR study, which is augmented by density-functional theory modeling, both the coordination geometry and its structural dynamics are indeed highly sensitive towards the expansion of the nominal donor number. The additional donors in 3b introduced through the phenyl-pyridine commutation actually give rise to a rich and diverse stereochemistry of the derived Zn2+ and Fe2+ complexes. Notably, even within a single complex unit coordination of 3b ranges from strongly distorted N3 coordination with a long assisting additional contact (Zn2+ and Fe2+) to a more symmetric N2(+2) or N4 situation in Fe2+. DFT modeling unravels that the additional donors are hemi-labile and coordinate to the Fe2+ only in HS state, leaving the elusive low-spin (LS) state in a fairly undisturbed octahedral environment with 3b being N3 coordinate. That is, the coordination number of the complex autogeneously responds to the altered spin-state. Necessarily this switch in coordination number requires strong structural changes upon SCO. This leads to increased activation barriers for SCO as could be deduced from a temperature-dependent analysis of the dynamic 1H NMR-line broadening and corroborated by accompanying theoretical analysis of the SCO reaction coordinate. For [Fe(3b)2]2+ long spin-state lifetimes τ > 1 ms prevail below the characteristic temperature T (1 ms) = 235 K; this value should be compared with a lifetime of only 150 ns derived for the close analogue [Fe(3a)2]2+. The principle applied herein is general and allows transferring of LS Fe2+ complexes with suitably placed phenyl substituents into SCO complexes with spin-state adaptive coordination number and hence long-lived HS excited states.

2.
Dalton Trans ; 47(37): 13180-13189, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30178800

ABSTRACT

Complexes [Co(L)2](ClO4)2 (L = o-substituted 2-(pyridine-2-yl)-1,10-phenanthrolines 1a-c) containing three redox active centres (a Co2+ ion and two triaryl amine (Tara) units) have been synthesised. The order of oxidation steps in [Co(L)2](ClO4)2 (L = 1a-c) was determined using cyclic voltammetry and EPR/UV-vis-NIR spectroelectrochemistry. In acetonitrile solutions, at room temperature, the first oxidation is Co-centred followed by the Tara oxidation at more anodic potentials. The order of oxidation is inverted in solutions of the less polar solvent dichloromethane. The Co3+/2+-centred redox event leads to a spin transition between the paramagnetic high-spin (HS) Co2+ and the diamagnetic low-spin (LS) Co3+ state, which was proven using 1H NMR and EPR spectroscopy. After one-electron oxidation of [Co(L)2](ClO4)2, an equilibrium between the diamagnetic [Co3+(L)]3+ and paramagnetic [Co2+(L)(L+)]3+ state in [Co(L)2]3+ (L = 1a-c) was found. Cyclic voltammetry showed enhanced intermolecular electron transfer between the [Co2+(L)2]2+ and [Co3+(L)2]3+ redox states mediated by [Co2+(L)(L+)]3+. Variable temperature vis-NIR spectroscopy of in situ generated [Co(L)2]3+ revealed a temperature-dependent redox equilibrium between the [Co3+(L)2]3+ and the [Co2+(L+)(L)]3+ states (L = 1a-c). Magnetic coupling between the HS-Co2+ ion and the Tara+ radical in [HS-Co2+(L+)(L)]3+ (L = 1a,c) was deduced from broad and undetectable lines observed in the corresponding EPR spectra. Complete oxidation to [LS-Co3+(L+)2]5+ (L = 1a,c) leads to characteristic EPR spectra of Tara biradicals with non-interacting spins.

3.
Dalton Trans ; 46(8): 2690-2698, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28170014

ABSTRACT

A new tridentate phenanthroline-pyridyl-based ligand 1 containing a redox active Tara (triaryl amine) unit has been developed (1 = 4-((6-(1,10-phenanthrolin-2-yl)pyridin-2-yl)oxy)-N,N-di-p-tolylaniline). The complex [Co2+(1)2](ClO4/BF4)2 was prepared and the order of the oxidation steps was analysed by cyclic voltammetry and EPR/UV-vis-NIR spectroelectrochemistry. Oxidation of [Co2+(1)2]2+ to [Co3+(1+)2]5+ proceeds in two steps. The first step is the Co2+/3+ centred oxidation to [Co3+(1)2]3+ (E°'(M2+/3+) = 284 mV vs. Fc/Fc+) followed by oxidation of the Tara0/+ centres (E°'(Tara) = 531 mV). Both kinds of oxidation processes were independently investigated in the analogous complexes [Zn(1)2](ClO4)2 and [Co(2)2](BF4)2 allowing an assignment of changes in the electronic spectra to the redox states (2 = 2-(6-phenoxypyridin-2-yl)-1,10-phenanthroline). Although spectroelectrochemistry did not indicate substantial coupling between the redox centres the Tara unit is an efficient mediator for the self-exchange in the [Co2+/3+(1)2]2+/3+ couple. The electron transfer by self-exchange in [Co2+/3+(1)2]2+/3+ was further investigated by variable temperature (VT) 1H NMR spectroscopy. In addition, the resonances found in the paramagnetic proton NMR spectra were assigned by using COSY, T1 and EXSY measurements in combination with the Co-N distances obtained from X-ray analysis. [Co(1)2]2+ is found in the HS state. In contrast, the Fe2+ species [Fe(1)2](ClO4)2 is a spincrossover system. The SCO was analysed in solution by VT 1H NMR and VT/vis spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...