Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 124(30): 16680-16688, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32765801

ABSTRACT

The temperature-induced structural changes of Fe-, Co-, and Ni-Au core-shell nanoparticles with diameters around 5 nm are studied via atomically resolved transmission electron microscopy. We observe structural transitions from local toward global energy minima induced by elevated temperatures. The experimental observations are accompanied by a computational modeling of all core-shell particles with either centralized or decentralized core positions. The embedded atom model is employed and further supported by density functional theory calculations. We provide a detailed comparison of vacancy formation energies obtained for all materials involved in order to explain the variations in the restructuring processes which we observe in temperature-programmed TEM studies of the particles.

2.
Phys Chem Chem Phys ; 21(37): 21104-21108, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31528952

ABSTRACT

Vanadium oxide clusters with a mean diameter below 10 nm are investigated by high resolution Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and UV-vis absorption spectroscopy. The clusters are synthesised by sublimation from bulk vanadium(v) oxide, in combination with a pick-up by superfluid helium droplets. The latter act as reaction chambers which enable cluster growth under fully inert and solvent-free conditions. High-resolution STEM images of deposited vanadium oxide particles allowing for the determination of lattice constants, clearly indicate a dominating presence of V2O5. This finding is further supported by UV-vis absorption spectra of nanoparticles after deposition on fused silica substrates, which indicates that the oxidation state of the material is preserved over the entire process. From the results of the UV-vis measurement, the band gap of the nanosized V2O5 could be determined to be 3.3 eV. The synthesis approach provides a route to clean V2O5 clusters as it does not involve any surfactant or solvents, which is crucial for an unbiased measurement of intrinsic catalyst properties.

3.
Chem Sci ; 10(12): 3473-3480, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30996937

ABSTRACT

Oxide nanoparticles in the size range of a few nanometers are typically synthesized in solution or via laser ablation techniques, which open numerous channels for structural change via chemical reactions or fragmentation processes. In this work, neutral vanadium oxide nanoparticles are instead synthesized by sublimation from bulk in combination with a pickup by superfluid helium droplets. Mass spectroscopy measurements clearly demonstrate the preservation of the bulk stoichiometric ratio of vanadium to oxygen in He-grown nanoparticles, indicating a tendency towards tetrahedral coordination of the vanadium centers in finite geometries. This unexpected finding opens up new possibilities for a combined on-the-fly synthesis of nanoparticles consisting of metal and metal-oxide layers. In comparison to mass spectra obtained via direct ionization of vanadium oxide in an effusive beam, where strong fragmentation occurred, we observe a clear preference for (V2O5) n oligomers with even n inside the He nanodroplets, which is further investigated and explained using the electronic structure theory.

4.
J Phys Chem C Nanomater Interfaces ; 123(32): 20037-20043, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-33014236

ABSTRACT

Structural changes of Ni-Au core-shell nanoparticles with increasing temperature are studied at atomic resolution. The bimetallic clusters, synthesized in superfluid helium droplets, show a centralized Ni core, which is an intrinsic feature of the growth process inside helium. After deposition on SiN x , the nanoparticles undergo a programmed temperature treatment in vacuum combined with an in situ transmission electron microscopy study of structural changes. We observe not only full alloying far below the actual melting temperature, but also a significantly higher stability of core-shell structures with decentralized Ni cores. Explanations are provided by large-scale molecular dynamics simulations on model structures consisting of up to 3000 metal atoms. Two entirely different diffusion processes can be identified for both types of core-shell structures, strikingly illustrating how localized, atomic features can still dictate the overall behavior of a nanometer-sized particle.

5.
Nanoscale Adv ; 1(6): 2276-2283, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-36131962

ABSTRACT

The oxidation of Fe@Au core@shell clusters with sizes below 5 nm is studied via high resolution scanning transmission electron microscopy. The bimetallic nanoparticles are grown in superfluid helium droplets under fully inert conditions, avoiding any effect of solvents or template structures, and deposited on amorphous carbon. Oxidation resistivity is tested by exposure to oxygen at ambient conditions. The passivating effect of Au-shells is studied in detail and a critical Au shell thickness is determined which keeps the Fe core completely unharmed. Additionally, we present the first synthesis of Fe@Au@Fe-oxide onion-type structures.

6.
J Chem Phys ; 149(2): 024305, 2018 Jul 14.
Article in English | MEDLINE | ID: mdl-30007398

ABSTRACT

The 6p 2P1/2 ← 6s 2S1/2 and 6p 2P3/2 ← 6s 2S1/2 transitions (D lines) of gold atoms embedded in superfluid helium nanodroplets have been investigated using resonant two-photon ionization spectroscopy. Both transitions are strongly blue-shifted and broadened due to the repulsive interaction between the Au valence electron and the surrounding helium. The in-droplet D lines are superimposed by the spectral signature of Au atoms relaxed into the metastable 2D states. These features are narrower than the in-droplet D lines and exhibit sharp rising edges that coincide with bare atom transitions. It is concluded that they originate from metastable 2D state AuHen exciplexes that have been ejected from the helium droplets during a relaxation process. Interestingly, the mechanism that leads to the formation of these complexes is suppressed for very large helium droplets consisting of about 2 × 106 He atoms, corresponding to a droplet diameter on the order of 50 nm. The assignment of the observed spectral features is supported by ab initio calculations employing a multiconfigurational self-consistent field method and a multi-reference configuration interaction calculation. For large helium droplets doped with Au oligomers, excitation spectra for mass channels corresponding to Aun with n = 2, 3, 4, 5, 7, and 9 are presented. The mass spectrum reveals even-odd oscillations in the number of Au atoms that constitute the oligomer, which is characteristic for coinage metal clusters. Resonances are observed close by the in-droplet D1 and D2 transitions, and the corresponding peak forms are very similar for different oligomer sizes.

7.
Ultramicroscopy ; 192: 69-79, 2018 09.
Article in English | MEDLINE | ID: mdl-29902687

ABSTRACT

We present a computational scheme to simulate beam induced dynamics of atoms in surface dominated, metallic systems. Our approach is based on molecular dynamics and Monte Carlo techniques. The model is tested with clusters comprised of either Ni, Ag or Au. We vary their sizes and apply different electron energies and cluster temperatures to elucidate fundamental relations between these experimental parameters and beam induced displacement probabilities. Furthermore, we demonstrate the capability of our code to simulate beam driven dynamics by using Ag and Au clusters as demonstration systems. Simulations of beam induced displacement and sputtering effects are compared with experimental results obtained via scanning transmission electron microscopy. The clusters in question are synthesised with exceptional purity inside inert superfluid He droplets and deposited on amorphous carbon supports. The presented results may help to understand electron beam driven processes in metallic systems.

8.
Nanoscale ; 10(4): 2017-2024, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29319708

ABSTRACT

Alloying processes in nanometre-sized Ag@Au and Au@Ag core@shell particles with average radii of 2 nm are studied via high resolution Transmission Electron Microscopy (TEM) imaging on in situ heatable carbon substrates. The bimetallic clusters are synthesized in small droplets of superfluid helium under fully inert conditions. After deposition, they are monitored during a heating cycle to 600 K and subsequent cooling. The core-shell structure, a sharply defined feature of the TEM High-Angle Annular Dark-Field images taken at room temperature, begins to blur with increasing temperature and transforms into a fully mixed alloy around 573 K. This transition is studied at atomic resolution, giving insights into the alloying process with unprecedented precision. A new image-processing method is presented, which allows a measurement of the temperature-dependent diffusion constant at the nanoscale. The first quantification of this property for a bimetallic structure <5 nm sheds light on the thermodynamics of finite systems and provides new input for current theoretical models derived from bulk data.

9.
Phys Chem Chem Phys ; 19(14): 9402-9408, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28327747

ABSTRACT

We present time-resolved transmission electron microscopy studies of the degradation of Au, Ag, Cu and Ni nanowires deposited on a heated support. The wires are grown under fully inert conditions in superfluid helium droplets and deposited onto amorphous carbon. The inherent stability of these pristine metal nanowires with diameters below 10 nm is investigated in the absence of any stabilizers, templates or solvents. The phenomenon of Rayleigh-breakup, a consequence of diffusion processes along the wire surfaces, is analysed in situ via scans over time and support temperature. Our experimental efforts are combined with simulations based on a novel model featuring a cellular automaton to emulate surface diffusion. Based on this model, correlations between the material parameters and actual breakup behaviour are studied.

10.
J Chem Phys ; 143(13): 134201, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26450307

ABSTRACT

Micrometer sized helium droplets provide an extraordinary environment for the growth of nanoparticles. The method promises great potential for the preparation of core-shell particles as well as one-dimensional nanostructures, which agglomerate along quantum vortices, without involving solvents, ligands, or additives. Using a new apparatus, which enables us to record mass spectra of heavy dopant clusters (>10(4) amu) and to produce samples for transmission electron microscopy simultaneously, we synthesize bare and bimetallic nanoparticles consisting of various materials (Au, Ni, Cr, and Ag). We present a systematical study of the growth process of clusters and nanoparticles inside the helium droplets, which can be described with a simple theoretical model.

SELECTION OF CITATIONS
SEARCH DETAIL
...