Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 4601, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944676

ABSTRACT

In this paper, we explore the value of measures of mixedness in witnessing entanglement. While all measures of mixedness may be used to witness entanglement, we show that all such entangled states must have a negative partial transpose (NPT). Where the experimental resources needed to determine this negativity scale poorly at high dimension, we compare different measures of mixedness over both Haar-uniform and uniform-purity ensembles of joint quantum states at varying dimension to gauge their relative success at witnessing entanglement. In doing so, we find that comparing joint and marginal purities is overwhelmingly (albeit not exclusively) more successful at identifying entanglement than comparing joint and marginal von Neumann entropies, in spite of requiring fewer resources. We conclude by showing how our results impact the fundamental relationship between correlation and entanglement and related witnesses.

2.
Nat Commun ; 10(1): 2785, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31239445

ABSTRACT

Entanglement is the powerful and enigmatic resource central to quantum information processing, which promises capabilities in computing, simulation, secure communication, and metrology beyond what is possible for classical devices. Exactly quantifying the entanglement of an unknown system requires completely determining its quantum state, a task which demands an intractable number of measurements even for modestly-sized systems. Here we demonstrate a method for rigorously quantifying high-dimensional entanglement from extremely limited data. We improve an entropic, quantitative entanglement witness to operate directly on compressed experimental data acquired via an adaptive, multilevel sampling procedure. Only 6,456 measurements are needed to certify an entanglement-of-formation of 7.11 ± .04 ebits shared by two spatially-entangled photons. With a Hilbert space exceeding 68 billion dimensions, we need 20-million-times fewer measurements than the uncompressed approach and 1018-times fewer measurements than tomography. Our technique offers a universal method for quantifying entanglement in any large quantum system shared by two parties.

3.
Phys Rev Lett ; 112(25): 253602, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-25014815

ABSTRACT

The more information a measurement provides about a quantum system's position statistics, the less information a subsequent measurement can provide about the system's momentum statistics. This information trade-off is embodied in the entropic formulation of the uncertainty principle. Traditionally, uncertainly relations correspond to resolution limits; increasing a detector's position sensitivity decreases its momentum sensitivity and vice versa. However, this is not required in general; for example, position information can instead be extracted at the cost of noise in momentum. Using random, partial projections in position followed by strong measurements in momentum, we efficiently determine the transverse-position and transverse-momentum distributions of an unknown optical field with a single set of measurements. The momentum distribution is directly imaged, while the position distribution is recovered using compressive sensing. At no point do we violate uncertainty relations; rather, we economize the use of information we obtain.

4.
Phys Rev Lett ; 110(13): 130407, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23581303

ABSTRACT

In this Letter, we derive an entropic Einstein-Podolsky-Rosen (EPR) steering inequality for continuous-variable systems using only experimentally measured discrete probability distributions and details of the measurement apparatus. We use this inequality to witness EPR steering between the positions and momenta of photon pairs generated in spontaneous parametric down-conversion. We examine the asymmetry between parties in this inequality, and show that this asymmetry can be used to reduce the technical requirements of experimental setups intended to demonstrate the EPR paradox. Furthermore, we develop a more stringent steering inequality that is symmetric between parties, and use it to show that the down-converted photon pairs also exhibit symmetric EPR steering.

5.
Phys Rev Lett ; 108(14): 143603, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22540794

ABSTRACT

High-dimensional Hilbert spaces used for quantum communication channels offer the possibility of large data transmission capabilities. We propose a method of characterizing the channel capacity of an entangled photonic state in high-dimensional position and momentum bases. We use this method to measure the channel capacity of a parametric down-conversion state by measuring in up to 576 dimensions per detector. We achieve a channel capacity over 7 bits/photon in either the position or momentum basis. Furthermore, we provide a correspondingly high-dimensional separability bound that suggests that the channel performance cannot be replicated classically.

SELECTION OF CITATIONS
SEARCH DETAIL
...