Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 125(5): 053603, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32794877

ABSTRACT

Single particle-resolved fluorescence imaging is an enabling technology in cold-atom physics. However, so far, this technique has not been available for nanophotonic atom-light interfaces. Here, we image single atoms that are trapped and optically interfaced using an optical nanofiber. Near-resonant light is scattered off the atoms and imaged while counteracting heating mechanisms via degenerate Raman cooling. We detect trapped atoms within 150 ms and record image sequences of given atoms. Building on our technique, we perform two experiments which are conditioned on the number and position of the nanofiber-trapped atoms. We measure the transmission of nanofiber-guided resonant light and verify its exponential scaling in the few-atom limit, in accordance with Beer-Lambert's law. Moreover, depending on the interatomic distance, we observe interference of the fields that two simultaneously trapped atoms emit into the nanofiber. The demonstrated technique enables postselection and possible feedback schemes and thereby opens the road toward a new generation of experiments in quantum nanophotonics.

2.
Phys Rev Lett ; 121(25): 253603, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30608799

ABSTRACT

We realize a mechanical analogue of the Dicke model, achieved by coupling the spin of individual neutral atoms to their quantized motion in an optical trapping potential. The atomic spin states play the role of the electronic states of the atomic ensemble considered in the Dicke model, and the in-trap motional states of the atoms correspond to the states of the electromagnetic field mode. The coupling between spin and motion is induced by an inherent polarization gradient of the trapping light fields, which leads to a spatially varying vector light shift. We experimentally show that our system reaches the ultrastrong coupling regime; i.e., we obtain a coupling strength that is a significant fraction of the trap frequency. Moreover, with the help of an additional light field, we demonstrate the in situ tuning of the coupling strength. Beyond its fundamental interest, the demonstrated one-to-one mapping between the physics of optically trapped cold atoms and the Dicke model paves the way for implementing protocols and applications that exploit extreme coupling strengths.

3.
Nat Commun ; 5: 5713, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25502565

ABSTRACT

The spin of light in subwavelength-diameter waveguides can be orthogonal to the propagation direction of the photons because of the strong transverse confinement. This transverse spin changes sign when the direction of propagation is reversed. Using this effect, we demonstrate the directional spontaneous emission of photons by laser-trapped caesium atoms into an optical nanofibre and control their propagation direction by the excited state of the atomic emitters. In particular, we tune the spontaneous emission into the counter-propagating guided modes from symmetric to strongly asymmetric, where more than % of the optical power is launched into one or the other direction. We expect our results to have important implications for research in quantum nanophotonics and for implementations of integrated optical signal processing in the quantum regime.

4.
Ultramicroscopy ; 141: 9-15, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24704604

ABSTRACT

Experiments with electron or ion matter waves require a coherent, monochromatic and long-term stable source with high brightness. These requirements are best fulfilled by single atom tip (SAT) field emitters. The performance of an iridium covered W(111) SAT is demonstrated and analyzed for electrons in a biprism interferometer. Furthermore we characterize the emission of the SAT in a separate field electron and field ion microscope and compare it with other emitter types. A new method is presented to fabricate the electrostatic charged biprism wire that separates and combines the matter wave. In contrast to other biprism interferometers the source and the biprism size are well defined within a few nanometers. The setup has direct applications in ion interferometry and Aharonov-Bohm physics.

5.
Phys Rev Lett ; 110(24): 243603, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165922

ABSTRACT

We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.

6.
Nat Nanotechnol ; 7(8): 515-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22706699

ABSTRACT

Dispersion forces are long-range interactions between polarizable objects that arise from fluctuations in the electromagnetic field between them. Dispersion forces have been observed between microscopic objects such as atoms and molecules (the van der Waals interaction), between macroscopic objects (the Casimir interaction) and between an atom and a macroscopic object (the Casimir-Polder interaction). Dispersion forces are known to increase the attractive forces between the components in nanomechanical devices, to influence adsorption rates onto nanostructures, and to influence the interactions between biomolecules in biological systems. In recent years, there has been growing interest in studying dispersion forces in nanoscale systems and in exploring the interactions between carbon nanotubes and cold atoms. However, there are considerable difficulties in developing dispersion force theories for general, finite geometries such as nanostructures. Thus, there is a need for new experimental methods that are able to go beyond measurements of planar surfaces and nanoscale gratings and make measurements on isolated nanostructures. Here, we measure the dispersion force between a rubidium atom and a multiwalled carbon nanotube by inserting the nanotube into a cloud of ultracold rubidium atoms and monitoring the loss of atoms from the cloud as a function of time. We perform these experiments with both thermal clouds of ultracold atoms and with Bose-Einstein condensates. The results obtained with this approach will aid the development of theories describing quantum fields near nanostructures, and hybrid cold-atom/solid-state devices may also prove useful for applications in quantum sensing and quantum information.


Subject(s)
Fullerenes/chemistry , Nanotubes, Carbon/chemistry , Quantum Dots , Adsorption , Electromagnetic Fields , Nanostructures
7.
Nat Nanotechnol ; 6(7): 446-51, 2011 May 29.
Article in English | MEDLINE | ID: mdl-21623359

ABSTRACT

Scanning probe microscopes are widely used to study surfaces with atomic resolution in many areas of nanoscience. Ultracold atomic gases trapped in electromagnetic potentials can be used to study electromagnetic interactions between the atoms and nearby surfaces in chip-based systems. Here we demonstrate a new type of scanning probe microscope that combines these two areas of research by using an ultracold gas as the tip in a scanning probe microscope. This cold-atom scanning probe microscope offers a large scanning volume, an ultrasoft tip of well-defined shape and high purity, and sensitivity to electromagnetic forces (including dispersion forces near nanostructured surfaces). We use the cold-atom scanning probe microscope to non-destructively measure the position and height of carbon nanotube structures and individual free-standing nanotubes. Cooling the atoms in the gas to form a Bose-Einstein condensate increases the resolution of the device.

SELECTION OF CITATIONS
SEARCH DETAIL
...