Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3308, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632275

ABSTRACT

Continuous-flow biocatalysis utilizing immobilized enzymes emerged as a sustainable route for chemical synthesis. However, inadequate biocatalytic efficiency from current flow reactors, caused by non-productive enzyme immobilization or enzyme-carrier mismatches in size, hampers its widespread application. Here, we demonstrate a general-applicable and robust approach for the fabrication of a high-performance enzymatic continuous-flow reactor via integrating well-designed scalable isoporous block copolymer (BCP) membranes as carriers with an oriented and productive immobilization employing material binding peptides (MBP). Densely packed uniform enzyme-matched nanochannels of well-designed BCP membranes endow the desired nanoconfined environments towards a productive immobilized phytase. Tuning nanochannel properties can further regulate the complex reaction process and fortify the catalytic performance. The synergistic design of enzyme-matched carriers and efficient enzyme immobilization empowers an excellent catalytic performance with >1 month operational stability, superior productivity, and a high space-time yield (1.05 × 105 g L-1 d-1) via a single-pass continuous-flow process. The obtained performance makes the designed nano- and isoporous block copolymer membrane reactor highly attractive for industrial applications.


Subject(s)
Bioreactors , Enzymes, Immobilized , Enzymes, Immobilized/chemistry , Biocatalysis , Catalysis , Polymers/chemistry
2.
J Phys Chem Lett ; 14(51): 11659-11664, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38109267

ABSTRACT

Vacancy defects are known to have significant effects on the physical and chemical properties of nanomaterials. However, the formation and structural dynamics of vacancy defects in atomically precise coinage metal clusters have hardly been explored due to the challenges associated with isolation of such defected clusters. Herein, we isolate [Ag28(BDT)12]2- (BDT is 1,3-benzenedithiol), a cluster with a "missing atom" site compared to [Ag29(BDT)12]3-, whose precise structure is known from X-ray diffraction. [Ag28(BDT)12]2- was formed in the gas-phase by collisional heating of [Ag28Hg(BDT)12]2-, a Hg-doped analogue of the parent cluster. The structural changes resulting from the loss of the Hg heteroatom were investigated by trapped ion mobility mass spectrometry. Density functional theory calculations were performed to provide further insights into the defect structures, and molecular dynamics simulations revealed defect site-dependent structural relaxation processes.

3.
J Am Soc Mass Spectrom ; 33(9): 1692-1696, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36018317

ABSTRACT

We present a novel, straightforward method to determine the enantiomeric excess (ee) of tryptophan (Trp) and N-tert-butyloxycarbonyl-O-benzylserine (BBS) solutions without chiral additives. For this, lithium carbonate, sodium carbonate, or silver acetate was added to solutions of Trp or BBS. Singly negatively charged dimer and trimer clusters were then formed by electrospray ionization and analyzed using trapped ion mobility spectrometry (TIMS) and time-of-flight mass spectrometry. When a solution contains both enantiomers, homo- and heterochiral clusters are generated which can be separated in the TIMS-tunnel based on their different mobilities using a nitrogen buffer gas. The ratio of homochiral to heterochiral clusters shows a binomial distribution and can be calibrated with solutions of known ee to yield ee measurements of samples with better than 1% accuracy. Samples can be prepared rapidly, and measurements are completed in less than 5 min. Current instrumental limitations restrict this method to rigid molecules with large functional groups adjacent to the chiral centers. Nevertheless, we expect this method to be applicable to many pharmaceuticals and provide the example of 1-methyltryptophan to demonstrate this.


Subject(s)
Ion Mobility Spectrometry , Spectrometry, Mass, Electrospray Ionization , Gases , Spectrometry, Mass, Electrospray Ionization/methods , Stereoisomerism
4.
Membranes (Basel) ; 12(6)2022 May 31.
Article in English | MEDLINE | ID: mdl-35736284

ABSTRACT

Ion adsorbing ultrafiltration membranes provide an interesting possibility to remove toxic ions from water. Furthermore, it is also possible to recover valuable elements. In this work, we demonstrate two easy strategies to modify polyacrylonitrile membranes with anion and cation adsorbing groups. The membranes were modified to have positively charged amine groups or negatively charged carboxyl groups. The success of the reactions was confirmed using IR spectroscopy and zeta-potential measurements. The membranes carrying negatively charged groups provided a negative zeta-potential and had an isoelectric point at pH 3.6, while the membranes carrying positively charged groups had a positive zeta-potential in the analyzed pH range. Since only the surface of the polymer was modified, the pore size and permeance of the membranes were not drastically affected. The membranes prepared by both modification strategies had a pure water permeance higher than 1000 L/(m2 h bar) and a water contact angle of 44.3 and 57.2°, respectively. Therefore, the membranes can be operated at low pressures with reasonable flux. Additionally, SEM images showed that the membranes were still open-pored. Adsorption tests using a positively and a negatively charged dye as well as a toxic cation and an anion were performed to analyze the adsorption behavior. Both membranes were able to adsorb the oppositely charged dyes as well as the copper and chromate ions. Therefore, these membranes are good candidates to purify water streams containing hazardous ions.

5.
J Am Soc Mass Spectrom ; 33(4): 695-703, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35298159

ABSTRACT

Electrospray ionization of THF solutions of preformed [K(18-c-6)][M(COT)2] (M = Dy(III), Y(III); COT = C8H82-,18-c-6 = C12H24O6) yields the isolated species [(M(COT)2)n+1 + nK]- with n = 0-3. High-resolution ion mobility spectrometry combined with density functional theory calculations performed for the n = 0-2 aggregates indicate that anionic multidecker stacks interlinked by potassium cations are formed. The alternating metal ions are aligned linearly: COT2--M3+-COT2--K+-COT2--M3+-COT2-. The different M3+ ionic radii lead to slight but resolvable changes in mobility and thus collision cross sections indicative of different overall heights of the multidecker stacks. CID measurements show that the aggregates fragment by cleavage at the K+ interconnections.

6.
J Am Soc Mass Spectrom ; 33(4): 722-730, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35300493

ABSTRACT

Lanthanide-dependent enzymes and their biomimetic complexes have arisen as an interesting target of research in the past decade. These enzymes, specifically, pyrroloquinoline quinone (PQQ)-bearing methanol dehydrogenases, efficiently convert alcohols to the respective aldehydes. To rationally design bioinspired alcohol dehydrogenation catalysts, it is imperative to understand the species involved in catalysis. However, given the extremely flexible coordination sphere of lanthanides, it is often difficult to assess the number and nature of the active species. Here, we show how such questions can be addressed by using a combination of ion mobility spectrometry, mass spectrometry, and quantum-chemical calculations to study the test systems PQQ and lanthanide-PQQ-crown ether ligand complexes. Specifically, we determine the gas-phase structures of [PQQH2]-, [PQQH2+H2O]-, [PQQH2+MeOH]-, [PQQ-15c5+H]+, and [PQQ-15c5+Ln+NO3]2+ (Ln = La to Lu, except Pm). In the latter case, a trend to smaller collision cross sections across the lanthanide series is clearly observable, in line with the well-known lanthanide contraction. We hope that in the future such investigations will help to guide the design and understanding of lanthanide-based biomimetic complexes optimized for catalytic function.


Subject(s)
Crown Ethers , Lanthanoid Series Elements , Catalysis , Ligands , PQQ Cofactor/chemistry
7.
Chemistry ; 27(61): 15136-15146, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34632659

ABSTRACT

We report the binding geometries of the isomers that are formed when the hydrogen oxalate ((CO2 )2 H=HOx) anion attaches to dinuclear coinage metal phosphine complexes of the form [M1 M2 dcpm2 (HOx)]+ with M=Cu, Ag and dcpm=bis(dicyclohexylphosphino)methane, abbreviated [MM]+ . These structures are established by comparison of isomer-selective experimental vibrational band patterns displayed by the cryogenically cooled and N2 -tagged cations with DFT calculations of the predicted spectra for various local minima. Two isomeric classes are identified that feature either attachment of the carboxylate oxygen atoms to the two metal centers (end-on docking) or attachment of oxygen atoms on different carbon atoms asymmetrically to the metal ions (side-on docking). Within each class, there are additional isomeric variations according to the orientation of the OH group. This behavior indicates that HOx undergoes strong and directional coordination to [CuCu]+ but adopts a more flexible coordination to [AgAg]+ . Infrared spectra of the bare ions, fragmentation thresholds and ion mobility measurements are reported to explore the behaviors of the complexes at ambient temperature.

8.
J Am Chem Soc ; 143(42): 17778-17785, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34637616

ABSTRACT

We investigated the structural and spectroscopic properties of singly deprotonated biliverdin anions in vacuo, using a combination of cryogenic ion spectroscopy, ion mobility spectrometry, and density functional theory. The ion mobility results show that at least two conformers are populated, with the dominant conformer at 75-90% relative abundance. The vibrational NH stretching signatures are sensitive to the tetrapyrrole structure, and they indicate that the tetrapyrrole system is in a helical conformation, consistent with simulated ion mobility collision cross sections. The vibrational spectrum in the fingerprint region of this singly deprotonated species shows that the two propionate groups share the remaining acidic proton. The S1 band of the electronic spectrum in vacuo is broad, despite ion trap temperatures of 20 K during ion preparation, with a congested Franck-Condon envelope showing partially resolved vibrational features. The vertical transition exhibits a small solvatochromic red shift (-320 cm-1) in aqueous solution.

9.
Chemistry ; 27(61): 15187-15200, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34655123

ABSTRACT

The modular synthesis of Au(I)/Ru(II) decorated mono- and heterobimetallic complexes with π-conjugated [2.2]paracyclophane is described. [2.2]Paracyclophane serves as a rigid spacer which holds the metal centers in precise spatial orientations and allows metal-to-metal distance modulation. A broad set of architectural arrangements of pseudo -geminal, -ortho, -meta, and -para substitution patterns were employed. Metal-to-metal distance modulation of Au(I)/Ru(II) heterobimetallic complexes and the innate transannular π-communication of the cyclophanyl scaffold provides a promising platform for the investigations of structure-activity relationship and cooperative effects. The Au(I)/Ru(II) heterobimetallic cyclophanyl complexes are stable, easily accessible, and exhibit promising catalytic activity in the visible-light promoted arylative Meyer-Schuster rearrangement.

10.
Adv Mater ; 33(48): e2105251, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34580938

ABSTRACT

Accomplishing on-demand molecular separation with a high selectivity and good permeability is very desirable for pollutant removal and chemical and pharmaceutical processing. The major challenge for sub-10 nm filtration of particles and molecules is the fabrication of high-performance membranes with tunable pore size and designed functionality. Here, a versatile top-down approach is demonstrated to produce such a membrane using isoporous block copolymer membranes with well-defined pore sizes combined with growth of metal oxide using sequential infiltration synthesis and atomic layer deposition (SIS and ALD). The pore size of the membranes is tuned by controlled metal oxide growth within and onto the polymer channels, enabling up to twofold pore diameter reduction. Following the growth, the distinct functionalities are readily incorporated along the membrane nanochannels with either hydrophobic, cationic, or anionic groups via straightforward and scalable gas/liquid-solid interface reactions. The hydrophilicity/hydrophobicity of the membrane nanochannel is significantly changed by the introduction of hydrophilic metal oxide and hydrophobic fluorinated groups. The functionalized membranes exhibit a superior selectivity and permeability in separating 1-2 nm organic molecules and fractionating similar-sized proteins based on size, charge, and hydrophobicity. This demonstrates the great potential of organic-inorganic-organic isoporous membranes for high-performance molecular separation in numerous applications.

11.
Chemistry ; 27(61): 15201-15207, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34415066

ABSTRACT

We present a straightforward and generally applicable synthesis route for cofacially linked homo- and heterotrimetallic trisporphyin complexes. The protocol encompasses synthesising the first aryl-based, trans-o-phenylene trisporphyrin starting from pyrrole and benzaldehyde with an overall yield of 3.6 %. It also allows investigating the respective cis-isomer as the first conformationally restricted planar-chiral trisporphyrin. The free-base ligand was used in subsequent metalation reactions to afford the corresponding homotrimetallic Mn(III)-, Fe(III)-, Ni(II)-, Cu(II)-, Zn(II)- and Pd(II) complexes - additionally, a small adaptation of the protocol resulted in the defined Ni(II)Fe(III)Ni(II) complex in a total yield of 2.3 %. By monitoring Ni(II) insertion into the empty trimeric ligands, we affirmed that the outer porphyrin rings are filled before the internal ring. The molecular species were characterised by 1 H NMR, UV-Vis, photoluminescence, IR, MS, CID, and high-resolution IMS measurements.

12.
Chemistry ; 27(39): 10087-10098, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-33872420

ABSTRACT

Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone-dependent methanol dehydrogenases (MDH). Here we evaluate a literature-known pyrroloquinoline quinone (PQQ) and 1-aza-15-crown-5 based ligand platform as scaffold for Ca2+ , Ba2+ , La3+ and Lu3+ biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT-calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone-based radical.


Subject(s)
Crown Ethers , Lanthanoid Series Elements , Alcohol Oxidoreductases , Biomimetics , Calcium , PQQ Cofactor
13.
J Am Chem Soc ; 143(18): 6969-6980, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33913724

ABSTRACT

The kinetics of intercluster metal atom exchange reactions between solvated [Ag25(DMBT)18]- and [Au25(PET)18]- (DMBT and PET are 2,4-dimethylbenzenethiol and 2-phenylethanethiol, respectively, both C8H10S) were probed by electrospray ionization mass spectrometry and computer-based modeling. Anion mass spectra and collision induced dissociation (CID) measurements show that both cluster monomers and dimers are involved in the reactions. We have modeled the corresponding kinetics assuming a reaction mechanism in which metal atom exchange occurs through transient dimers. Our kinetic model contains three types of generic reactions: dimerization of monomers, metal atom exchange in the transient dimers, and dissociation of the dimers to monomers. There are correspondingly 377 discrete species connected by in total 1302 reactions (i.e., dimerization, dissociation and atom exchange reactions) leading to the entire series of monomeric and dimeric products [AgmAu25-m]- (m = 1-24) and [AgmAu50-m]2- (m = 0-50), respectively. The rate constants of the corresponding reactions were fitted to the experimental data, and good agreement was obtained with exchange rate constants which scale with the probability of finding a silver or gold atom in the respective monomeric subunit of the dimer, i.e., reflecting an entropic driving force for alloying. Allowing the dimerization rate constant to scale with increasing gold composition of the respective reactants improves the agreement further. The rate constants obtained are physically plausible, thus strongly supporting dimer-mediated metal atom exchange in this intercluster reaction system.

14.
Chemistry ; 27(9): 3047-3054, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33459421

ABSTRACT

We present a straightforward and generally applicable synthesis route for cofacially linked homo- and heterobimetallic porphyrin complexes. The protocol allows the synthesis of unsymmetrical aryl-based meso-meso as well as ß-meso-linked porphyrins. Our method significantly increases the overall yield for the published compound known as o-phenylene-bisporphyrin (OBBP) by a factor of 6.8. Besides the synthesis of 16 novel homobimetallic complexes containing MnIII , FeIII , NiII , CuII , ZnII , and PdII , we achieved the first single-crystal X-ray structure of an unsymmetrical cofacial benzene-linked porphyrin dimer containing both planar-chiral enantiomers of a NiII 2 complex. Additionally, this new methodology allows access to heterobimetallic complexes such as the FeIII -NiII containing carbon monoxide dehydrogenase active site analogue. The isolated species were investigated by various techniques, including ion mobility spectrometry, DFT calculations, and UV/Vis spectroscopy. This allowed us to probe the influence of interplane distance on Soret band splitting.

15.
ACS Nano ; 14(11): 15064-15070, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33089986

ABSTRACT

There are only a few examples of atomically precise, ligand protected, bimetallic coinage metal clusters in which molecular structure remains essentially unchanged over a wide composition range starting from the corresponding homometallic species. Such model systems are particularly useful to study the dynamics of alloy formation on the nanoscale. Here we demonstrate the unusual reactivity of solvated metalloid-superatom Ag29(BDT)12(PPh3)4 (BDT = 1,3 benzenedithiol) clusters toward semiconducting Cu12S6(DPPPT)4 (DPPPT = bis(diphenylphosphino)pentane) clusters as an efficient way to exchange multiple copper atoms into the atomically precise silver clusters without changing overall the structure type. Concentration-dependent UV-vis absorption and online mass spectrometry shows that 14 Cu atoms can be exchanged into the silver cluster. Beyond the 14 Cu atom exchange, the cluster degrades to smaller thiolates. Information on cluster structures is obtained from high-resolution ion mobility mass spectrometry, which shows a linear decrease in collision cross section (CCS) with each Ag/Cu exchanged. Several isomeric structures are calculated by density functional theory (DFT), and their calculated collision cross sections are used to identify the most stable isomers for each Ag/Cu exchange product. Ag/Cu exchange is essentially limited to the cluster surface/shell. The core appears not to be involved.

16.
Biomed Chromatogr ; 34(9): e4854, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32302415

ABSTRACT

Endogenous glutathione (GSH) and glutathione disulfide (GSSG) status is highly sensitive to oxidative conditions and have broad application as a surrogate indicator of redox status in vivo. Established methods for GSH and GSSG quantification in whole blood display limited utility in human plasma, where GSH and GSSG levels are ~3-4 orders of magnitude below those observed in whole blood. This study presents simplified sample processing and analytical LC-MS/MS approaches exhibiting the sensitivity and accuracy required to measure GSH and GSSG concentrations in human plasma samples, which after 5-fold dilution to suppress matrix interferences range from 200 to 500 nm (GSH) and 5-30 nm (GSSG). The utility of the methods reported herein is demonstrated by assay performance and validation parameters which indicate good sensitivity [lower limits of quantitation of 4.99 nm (GSH) and 3.65 nm (GSSG), and high assay precision (intra-assay CVs 3.6 and 1.9%, and inter-assay CVs of 7.0 and 2.8% for GSH and GSSG, respectively). These methods also exhibited exceptional recovery of analyte-spiked plasma samples (98.0 ± 7.64% for GSH and 98.5 ± 12.7% for GSSG). Good sample stability at -80°C was evident for GSH for up to 55 weeks and GSSG for up to 46 weeks, with average CVs <15 and <10%, respectively.


Subject(s)
Chromatography, Liquid/methods , Glutathione Disulfide/blood , Tandem Mass Spectrometry/methods , Glutathione/blood , Humans , Limit of Detection , Linear Models , Reproducibility of Results
17.
J Phys Chem Lett ; 11(7): 2675-2681, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32167769

ABSTRACT

The photophysics of the isolated trianion Ag29(BDT)123- (BDT = benzenedithiolate), a ligand-protected cluster comprising BDT-based ligands, terminating a shell of silver thiolates and a core of silver atoms, was studied in the gas phase by femtosecond time-resolved, pump-probe photoelectron spectroscopy. UV excitation at 490 nm populates one or more singlet excited states with significant charge transfer (CT) character in which electron density is shifted from shell to core. These CT states relax on an average time scale of several hundred femtoseconds by charge recombination to yield either the vibrationally excited singlet ground state (internal conversion) or a long-lived triplet (intersystem crossing). Our study is the first ultrafast spectroscopic probe of a ligand-protected coinage metal cluster in isolation. In the future, it will be interesting to study how cluster size, overall charge state, or heteroatom doping can be used to tune the corresponding relaxation dynamics in the absence of solvent.

18.
Phys Chem Chem Phys ; 21(35): 18877-18892, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31436767

ABSTRACT

We present high-resolution trapped ion mobility spectrometry (TIMS) measurements for fullerene ions in molecular nitrogen. Three different charge states were studied (monocations, monoanions and dianions) with fullerenes ranging in size from C60 to C150. Ions were prepared by either electrospray ionization (ESI, for mono- and dianions) or by atmospheric pressure chemical ionization (APCI, for monocations) of a preformed fullerene soot extract solution. We demonstrate that TIMS allows to identify (and separate) constituent isomers in favorable cases. Using DFT calculations based on known condensed phase structures and trajectory method (TM) calculations we can reproduce the experimental TIMSCCSN2 for fullerenes up to C108 to within 0.5%. Using candidate structures based on quantum chemical predictions, we have also obtained structural information for fullerenes C110-C150- a size range not previously accessed in condensed phase studies. We find that soluble fullerenes in this size have near-spherical rather than tubular structures. While the TM programs presently available for CCS modelling do a remarkably good job at describing the ion mobility of high (and even giant) fullerenes we observe a slight but systematic size-dependent deviation between TIMSCCSN2 values and our best computational fits which may reflect systematic bonding changes as the cage size increases.

19.
J Am Soc Mass Spectrom ; 30(10): 1973-1980, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31240563

ABSTRACT

We have used trapped ion mobility spectrometry (TIMS) to obtain highly accurate experimental collision cross sections (CCS) for the fullerene C80- and the endohedral metallofullerenes La2@C80-, Sc3N@C80-, and Er3N@C80- in molecular nitrogen. The CCS values of the endohedral fullerenes are 0.2% larger than that of the empty cage. Using a combination of density functional theory and trajectory calculations, we were able to reproduce these experimental findings theoretically. Two effects are discussed that contribute to the CCS differences: (i) a small increase in fullerene cage size upon endohedral doping and (ii) charge transfer from the encapsulated moieties to the cage thus increasing the attractive charge-induced dipole interaction between the (endohedral) fullerene ion and the nitrogen bath gas molecules.

20.
Arthropod Struct Dev ; 47(5): 482-497, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30120986

ABSTRACT

In many acoustic insects, mate finding and mate choice are primarily based on acoustic signals. In several species with high-intensity calling songs, such as the studied katydid Mecopoda sp., males exhibit an increase in their thoracic temperature during singing, which is linearly correlated with the amount of energy invested in song production. If this increased body temperature is used by females as an additional cue to assess the male's quality during mate choice, as has been recently hypothesized ("hot-male" hypothesis), thermosensory structures would be required to evaluate this cue. In the present study, therefore, we investigated the ultrastructure and physiology of thermosensitive sensilla coeloconica on the antennal flagella of Mecopoda sp. using a combination of electron microscopy and electrophysiological recording techniques. We could identify three distinct types of sensilla coeloconica based on differences in the number and branching pattern of their dendrites. Physiological recordings revealed the innervation by antagonistically responding thermoreceptors (cold and warm) and bimodal hygro-/thermoreceptors (moist or dry) in various combinations. Our findings indicate that Mecopoda sp. females are capable of detecting a singing male from distances of at least several centimetres solely by assessing thermal cues.


Subject(s)
Orthoptera/ultrastructure , Sensilla/physiology , Animals , Arthropod Antennae/physiology , Arthropod Antennae/ultrastructure , Dendrites/ultrastructure , Electrophysiology , Female , Humidity , Male , Microscopy, Electron, Transmission , Orthoptera/physiology , Sensilla/ultrastructure , Temperature , Thermoreceptors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...