Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(51): 11659-11664, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38109267

ABSTRACT

Vacancy defects are known to have significant effects on the physical and chemical properties of nanomaterials. However, the formation and structural dynamics of vacancy defects in atomically precise coinage metal clusters have hardly been explored due to the challenges associated with isolation of such defected clusters. Herein, we isolate [Ag28(BDT)12]2- (BDT is 1,3-benzenedithiol), a cluster with a "missing atom" site compared to [Ag29(BDT)12]3-, whose precise structure is known from X-ray diffraction. [Ag28(BDT)12]2- was formed in the gas-phase by collisional heating of [Ag28Hg(BDT)12]2-, a Hg-doped analogue of the parent cluster. The structural changes resulting from the loss of the Hg heteroatom were investigated by trapped ion mobility mass spectrometry. Density functional theory calculations were performed to provide further insights into the defect structures, and molecular dynamics simulations revealed defect site-dependent structural relaxation processes.

2.
ACS Nano ; 14(11): 15064-15070, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33089986

ABSTRACT

There are only a few examples of atomically precise, ligand protected, bimetallic coinage metal clusters in which molecular structure remains essentially unchanged over a wide composition range starting from the corresponding homometallic species. Such model systems are particularly useful to study the dynamics of alloy formation on the nanoscale. Here we demonstrate the unusual reactivity of solvated metalloid-superatom Ag29(BDT)12(PPh3)4 (BDT = 1,3 benzenedithiol) clusters toward semiconducting Cu12S6(DPPPT)4 (DPPPT = bis(diphenylphosphino)pentane) clusters as an efficient way to exchange multiple copper atoms into the atomically precise silver clusters without changing overall the structure type. Concentration-dependent UV-vis absorption and online mass spectrometry shows that 14 Cu atoms can be exchanged into the silver cluster. Beyond the 14 Cu atom exchange, the cluster degrades to smaller thiolates. Information on cluster structures is obtained from high-resolution ion mobility mass spectrometry, which shows a linear decrease in collision cross section (CCS) with each Ag/Cu exchanged. Several isomeric structures are calculated by density functional theory (DFT), and their calculated collision cross sections are used to identify the most stable isomers for each Ag/Cu exchange product. Ag/Cu exchange is essentially limited to the cluster surface/shell. The core appears not to be involved.

SELECTION OF CITATIONS
SEARCH DETAIL
...