Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Electrocardiol ; 76: 61-65, 2023.
Article in English | MEDLINE | ID: mdl-36436476

ABSTRACT

BACKGROUND: Several large trials have employed age or clinical features to select patients for atrial fibrillation (AF) screening to reduce strokes. We hypothesized that a machine learning (ML) model trained to predict AF risk from 12­lead electrocardiogram (ECG) would be more efficient than criteria based on clinical variables in indicating a population for AF screening to potentially prevent AF-related stroke. METHODS: We retrospectively included all patients with clinical encounters in Geisinger without a prior history of AF. Incidence of AF within 1 year and AF-related strokes within 3 years of the encounter were identified. AF-related stroke was defined as a stroke where AF was diagnosed at the time of stroke or within a year after the stroke. The efficiency of five methods was evaluated for selecting a cohort for AF screening. The methods were selected from four clinical trials (mSToPS, GUARD-AF, SCREEN-AF and STROKESTOP) and the ECG-based ML model. We simulated patient selection for the five methods between the years 2011 and 2014 and evaluated outcomes for 1 year intervals between 2012 and 2015, resulting in a total of twenty 1-year periods. Patients were considered eligible if they met the criteria before the start of the given 1-year period or within that period. The primary outcomes were numbers needed to screen (NNS) for AF and AF-associated stroke. RESULTS: The clinical trial models indicated large proportions of the population with a prior ECG for AF screening (up to 31%), coinciding with NNS ranging from 14 to 18 for AF and 249-359 for AF-associated stroke. At comparable sensitivity, the ECG ML model indicated a modest number of patients for screening (14%) and had the highest efficiency in NNS for AF (7.3; up to 60% reduction) and AF-associated stroke (223; up to 38% reduction). CONCLUSIONS: An ECG-based ML risk prediction model is more efficient than contemporary AF-screening criteria based on age alone or age and clinical features at indicating a population for AF screening to potentially prevent AF-related strokes.


Subject(s)
Atrial Fibrillation , Stroke , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Atrial Fibrillation/drug therapy , Electrocardiography , Retrospective Studies , Mass Screening , Stroke/diagnosis
2.
Circulation ; 143(13): 1287-1298, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33588584

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is associated with substantial morbidity, especially when it goes undetected. If new-onset AF could be predicted, targeted screening could be used to find it early. We hypothesized that a deep neural network could predict new-onset AF from the resting 12-lead ECG and that this prediction may help identify those at risk of AF-related stroke. METHODS: We used 1.6 M resting 12-lead digital ECG traces from 430 000 patients collected from 1984 to 2019. Deep neural networks were trained to predict new-onset AF (within 1 year) in patients without a history of AF. Performance was evaluated using areas under the receiver operating characteristic curve and precision-recall curve. We performed an incidence-free survival analysis for a period of 30 years following the ECG stratified by model predictions. To simulate real-world deployment, we trained a separate model using all ECGs before 2010 and evaluated model performance on a test set of ECGs from 2010 through 2014 that were linked to our stroke registry. We identified the patients at risk for AF-related stroke among those predicted to be high risk for AF by the model at different prediction thresholds. RESULTS: The area under the receiver operating characteristic curve and area under the precision-recall curve were 0.85 and 0.22, respectively, for predicting new-onset AF within 1 year of an ECG. The hazard ratio for the predicted high- versus low-risk groups over a 30-year span was 7.2 (95% CI, 6.9-7.6). In a simulated deployment scenario, the model predicted new-onset AF at 1 year with a sensitivity of 69% and specificity of 81%. The number needed to screen to find 1 new case of AF was 9. This model predicted patients at high risk for new-onset AF in 62% of all patients who experienced an AF-related stroke within 3 years of the index ECG. CONCLUSIONS: Deep learning can predict new-onset AF from the 12-lead ECG in patients with no previous history of AF. This prediction may help identify patients at risk for AF-related strokes.


Subject(s)
Atrial Fibrillation/diagnosis , Deep Learning/standards , Stroke/etiology , Atrial Fibrillation/complications , Electrocardiography , Female , Humans , Male , Neural Networks, Computer , Stroke/mortality , Survival Analysis
3.
JACC Heart Fail ; 8(7): 578-587, 2020 07.
Article in English | MEDLINE | ID: mdl-32387064

ABSTRACT

BACKGROUND: Heart failure is a prevalent, costly disease for which new value-based payment models demand optimized population management strategies. OBJECTIVES: This study sought to generate a strategy for managing populations of patients with heart failure by leveraging large clinical datasets and machine learning. METHODS: Geisinger electronic health record data were used to train machine learning models to predict 1-year all-cause mortality in 26,971 patients with heart failure who underwent 276,819 clinical episodes. There were 26 clinical variables (demographics, laboratory test results, medications), 90 diagnostic codes, 41 electrocardiogram measurements and patterns, 44 echocardiographic measurements, and 8 evidence-based "care gaps": flu vaccine, blood pressure of <130/80 mm Hg, A1c of <8%, cardiac resynchronization therapy, and active medications (active angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker/angiotensin receptor-neprilysin inhibitor, aldosterone receptor antagonist, hydralazine, and evidence-based beta-blocker) were collected. Care gaps represented actionable variables for which associations with all-cause mortality were modeled from retrospective data and then used to predict the benefit of prospective interventions in 13,238 currently living patients. RESULTS: Machine learning models achieved areas under the receiver-operating characteristic curve (AUCs) of 0.74 to 0.77 in a split-by-year training/test scheme, with the nonlinear XGBoost model (AUC: 0.77) outperforming linear logistic regression (AUC: 0.74). Out of 13,238 currently living patients, 2,844 were predicted to die within a year, and closing all care gaps was predicted to save 231 of these lives. Prioritizing patients for intervention by using the predicted reduction in 1-year mortality risk outperformed all other priority rankings (e.g., random selection or Seattle Heart Failure risk score). CONCLUSIONS: Machine learning can be used to priority-rank patients most likely to benefit from interventions to optimize evidence-based therapies. This approach may prove useful for optimizing heart failure population health management teams within value-based payment models.


Subject(s)
Disease Management , Heart Failure/therapy , Machine Learning , Population Surveillance/methods , Risk Assessment/methods , Aged , Aged, 80 and over , Female , Heart Failure/epidemiology , Humans , Male , Middle Aged , Morbidity/trends , ROC Curve , Retrospective Studies , United States/epidemiology
4.
Appl Clin Inform ; 9(3): 528-540, 2018 07.
Article in English | MEDLINE | ID: mdl-30040112

ABSTRACT

BACKGROUND: Asthma exacerbation leading to emergency department (ED) visit is prevalent, an indicator of poor control of asthma, and is a potentially preventable clinical outcome. OBJECTIVE: We propose to utilize multiple data elements available in electronic medical records (EMRs) and claims database to create separate algorithms with high validity for clinical and research purposes to identify asthma exacerbation-related ED visit among the general population. METHODS: We performed a retrospective study with inclusion criteria of patients aged 4 to 40 years, a visit to Geisinger ED from January 1, 2006, to October 28, 2013, with asthma on their problem list. Different electronic data elements including chief complaints, vitals, season, smoking, medication use, and discharge diagnoses were obtained to create the algorithm. A stratified random sample was generated to select the charts for review. Chart review was performed to classify patients with asthma-related ED visit, that is, the gold standard. Two reviewers performed the chart review and validation was done on a small subset. RESULTS: There were 966 eligible ED visits in the EMR sample and 731 in the claims sample. Agreement between reviewers was 95.45% and kappa statistic was 0.91. Mean age of the EMR sample was 22 years, and mostly white (93%). Multiple models conventionally used in studies were evaluated and the final model chosen included principal diagnosis, bronchodilator, and steroid use for both algorithms, chief complaints for EMR, and secondary diagnosis for claims. Area under the curve was 0.93 (95% confidence interval: 0.91-0.94) and 0.94 (0.93-0.96), respectively, for EMR and claims data, with positive predictive value of > 94%. The algorithms are visually presented using nomograms. CONCLUSION: We were able to develop two separate algorithms for EMR and claims to identify asthma exacerbation-related ED visit with excellent diagnostic ability and varying discrimination threshold for clinical and research purposes.


Subject(s)
Asthma , Electronic Health Records , Emergency Service, Hospital , Algorithms , Female , Humans , Male , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...