Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 12602, 2022 07 23.
Article in English | MEDLINE | ID: mdl-35871253

ABSTRACT

The cue-lure-responding New Guinea fruit fly, Bactrocera trivialis, poses a biosecurity risk to neighbouring countries, e.g., Australia. In trapping programs, lure caught flies are usually morphologically discriminated from non-target species; however, DNA barcoding can be used to confirm similar species where morphology is inconclusive, e.g., Bactrocera breviaculeus and B. rufofuscula. This can take days-and a laboratory-to resolve. A quicker, simpler, molecular diagnostic assay would facilitate a more rapid detection and potential incursion response. We developed LAMP assays targeting cytochrome c oxidase subunit I (COI) and Eukaryotic Translation Initiation Factor 3 Subunit L (EIF3L); both assays detected B. trivialis within 25 min. The BtrivCOI and BtrivEIF3L assay anneal derivatives were 82.7 ± 0.8 °C and 83.3 ± 1.3 °C, respectively, detecting down to 1 × 101 copies/µL and 1 × 103 copies/µL, respectively. Each assay amplified some non-targets from our test panel; however notably, BtrivCOI eliminated all morphologically similar non-targets, and combined, the assays eliminated all non-targets. Double-stranded DNA gBlocks were developed as positive controls; anneal derivatives for the COI and EIF3L gBlocks were 84.1 ± 0.7 °C and 85.8 ± 0.2 °C, respectively. We recommend the BtrivCOI assay for confirmation of suspect cue-lure-trapped B. trivialis, with BtrivEIF3L used for secondary confirmation when required.


Subject(s)
Tephritidae , Animals , Australia , Drosophila , Molecular Diagnostic Techniques , New Guinea , Nucleic Acid Amplification Techniques , Tephritidae/genetics
2.
Sci Rep ; 10(1): 9554, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533005

ABSTRACT

LAMP assays are targeted molecular tests for the rapid detection of species in the laboratory and field. We developed a LAMP assay for an economically important fruit fly species, Queensland fruit fly, Bactrocera tryoni. This assay was assessed against a broad panel of target and non-target species and found to be specific, only amplifying the target species and closest relatives, in a portable real-time fluorometer (Genie III) in under 15 minutes with an anneal derivative temperature of 82.5 oC. The assay is sensitive to low levels of target DNA (>0.016 ng/µl), performing equally to the existing qPCR test. To enable retention of a physical voucher specimen, for potential morphological confirmation of LAMP results, a novel whole-specimen non-destructive DNA extraction method was developed, suitable for LAMP in the field. The stability of DNA extraction and LAMP reagents was tested under simulated and actual field conditions and shown to be robust. Our new assay now provides a portable molecular tool for the detection of this significant tephritid fruit fly pest species of biosecurity/quarantine concern. This has already proven invaluable for in-field diagnostics, providing real-time support influencing immediate actions, with negative results allowing the release of fruit produce, and positive results initiating fruit fly control measures.


Subject(s)
Biological Assay/methods , Tephritidae/genetics , Animals , Quarantine/methods , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...