Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 237: 124534, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31549651

ABSTRACT

Information on the effects of multi-walled carbon nanotubes (MWCNTs) on topsoil around coal power plants (CPPs) is still very limited. In the present work, the influences of MWCNTs on potential hazardous elements (PHEs) and environmental carbonaceous compounds in agrarian topsoil around CPPs of Latin America were investigated. The environmentally elevated proportions of MWCNTs and PHEs can cause damage to developing a fetus. The ecological impacts of industrial energy byproducts generated by MWCNTs were also studied. The surface morphologies of MWCNTs and PHEs detected in topsoil samples were analyzed by advanced electron microscopy in a combination of energy dispersive X-ray spectroscopy (EDS). The alterations could be originated due to the different geophysical constituents and superficial structure, which in turn disturbed their geoavailability in studied topsoil. It was found that a large amount of MWCNTs and amorphous carbonaceous matters, which are responsible for adsorbing PHEs, existed in soils around CPPs. Hence, these findings could be used to better understand the geochemical properties of PHEs near CPPs.


Subject(s)
Environmental Monitoring , Nanotubes, Carbon/chemistry , Power Plants , Soil Pollutants/analysis , Adsorption , Coal/analysis , Soil/chemistry , Spectrometry, X-Ray Emission
2.
Environ Res ; 160: 562-567, 2018 01.
Article in English | MEDLINE | ID: mdl-29173343

ABSTRACT

Pollution generated by hazardous elements and persistent organic compounds that affect coal fire is a major environmental concern because of its toxic nature, persistence, and potential risk to human health. The coal mining activities are growing in the state of Santa Catarina in Brazil, thus the collateral impacts on the health and economy are yet to be analyzed. In addition, the environment is also enduring the collateral damage as the waste materials directly influence the coal by-products applied in civil constructions. This study was aimed to establish the relationships between the composition, morphology, and structural characteristics of ultrafine particles emitted by coal mine fires. In Brazil, the self-combustions produced by Al-Ca-Fe-Mg-Si coal spheres are rich in chalcophile elements (As, Cd, Cu, Hg, Pb, Sb, Se, Sn, and Zn), lithophile elements (Ce, Hf, In, La, Th, and U), and siderophile elements (Co, Cr, Mo, Fe, Ni, and V). The relationship between nanomineralogy and the production of hazardous elements as analyzed by advanced methods for the geochemical analysis of different materials were also delineated. The information obtained by the mineral substance analysis may provide a better idea for the understanding of coal-fire development and assessing the response of particular coal in different combustion processes.


Subject(s)
Coal , Environmental Exposure , Environmental Monitoring/methods , Hazardous Substances/analysis , Mining , Particulate Matter/analysis , Brazil , Hazardous Substances/classification , Humans , Particle Size , Risk Assessment , Spontaneous Combustion
3.
Environ Pollut ; 224: 158-170, 2017 May.
Article in English | MEDLINE | ID: mdl-28268029

ABSTRACT

We investigated the carcinogenic and mutagenic respiratory health risks related to the exposure to atmospheric PAHs in an urban area. Our study focused in the association of these pollutants and their possible effect in human health, principally respiratory and circulatory diseases. Also, we determined a relationship between the inhalation risk of PAHs and meteorological conditions. We validated the hypothesis that in winter PAHs with high molecular weight associated to submicron particles (PM1) may increase exposure risk, especially for respiratory diseases, bronchitis and pneumonia diseases. Moreover, in our study we verified the relationship between diseases and several carcinogenic PAHs (Ind, BbkF, DahA, BaP, and BghiP). These individual PAHs contributed the most to the potential risk of exposure for inhalation of PM1.0. Even at lower ambient concentrations of BaP and DahA in comparison with individual concentrations of other PAHs associated to PM1.0. Mainly, research suggests to include carcinogenic and mutagenic PAHs in future studies of environmental health risk due to their capacity to associate to PM10. Such carcinogenic and mutagenic PAHs are likely to provide the majority of the human exposure, since they originate from dense traffic urban areas were humans congregate.


Subject(s)
Air Pollutants/adverse effects , Carcinogens, Environmental/adverse effects , Environmental Exposure/adverse effects , Mutagens/adverse effects , Particulate Matter/chemistry , Polycyclic Aromatic Hydrocarbons/adverse effects , Respiratory Tract Diseases/chemically induced , Urban Health/statistics & numerical data , Adult , Age Distribution , Aged , Air Pollutants/analysis , Brazil , Carcinogens, Environmental/analysis , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Child , Cities , Environmental Health , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Hospitalization/statistics & numerical data , Humans , Mutagens/analysis , Particle Size , Particulate Matter/adverse effects , Polycyclic Aromatic Hydrocarbons/analysis , Respiratory Tract Diseases/epidemiology , Risk Assessment , Seasons
4.
Sci Total Environ ; 543(Pt A): 161-170, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26580739

ABSTRACT

Works of particle number and mass concentration variability have a great importance since they may indicate better the influence of vehicle emissions in an urban region. Moreover, the importance of this work lies in the fact that there are few studies in Brazil, where the fuel used has unique characteristics. Consequently, this paper presents measurements of particle number (size range 0.3-10 µm), particle mass (PM10, PM2.5, PM1), O3 and NOx (NO, NO2), in a site near a major highway at the Metropolitan Area of Porto Alegre, south Brazil. Measurements were carried out during two years: 2012 and 2013. Particle number and mass concentrations were measured using an optical counter with a PM10 analyzer. Results showed that concentrations of N0.3-1 (0.3-1 µm) were the highest, although similar to N1-2.5 (1-2.5 µm). Daily variability of the analyzed pollutants followed the traffic pattern. Moreover, NO2, O3, and particle number were higher during the day, whereas NO, NOx, and particle matter showed higher concentrations during nighttime. Traffic influence was evidenced by the mean concentrations of weekends and weekdays, being higher for the latter. Correlation of particles and gases with meteorological variables, together with the application of PCA confirmed the influence of vehicle exhaust discharges.

SELECTION OF CITATIONS
SEARCH DETAIL
...