Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Lang Learn Dev ; 19(4): 369-385, 2023.
Article in English | MEDLINE | ID: mdl-37771762

ABSTRACT

Socioeconomic status (SES)-related language gaps are known to widen throughout the course of the school years; however, not all children from lower SES homes perform worse than their higher SES peers on measures of language. The current study uses mediation and moderated mediation to examine how cognitive and language abilities (vocabulary, reading, phonological processing, working memory) account for individual differences in a children's ability to infer a novel word's meaning, a key component in word learning, in school-aged children from varying SES backgrounds. Vocabulary and reading comprehension mediated the relationship between SES and accuracy when inferring word meanings. The relationship between SES, vocabulary, and inferring word meaning was moderated by age, such that the influence of vocabulary on task performance was strongest in young children. The reading pathway did not interact with age effects, indicating reading is an important contributor to SES-related differences in how children infer a word's meaning throughout grade school. These findings highlight different paths by which children's trajectories for inferring word meanings may be impacted.

2.
J Dent Res ; 101(12): 1467-1473, 2022 11.
Article in English | MEDLINE | ID: mdl-35689403

ABSTRACT

Two damage regimes-"brittle" and "ductile"-have been identified in the literature on ceramic grinding, machining, grit blasting, and wear. In the brittle regime, the damage mechanism is essentially crack formation, while in the ductile region, it is quasiplasticity. Onset of the brittle mode poses the greater threat to strength, so it becomes important to understand the mechanics of ductile-brittle thresholds in these materials. Controlled microcontact tests with a sharp indenter are employed to establish such thresholds for a suite of contemporary computer-aided design/computer-aided manufacturing dental ceramics. Plots of flexural strength S versus indentation load P show a steep decline beyond the threshold, consistent with well-established contact mechanics relations. Threshold dimensions occur on a scale of order 1 µm and contact load of order 1 N, values pertinent to practical grit finishing protocols. The ductile side of ceramic shaping is accessed by reducing grit sizes, applied loads, and depths of cut below critical levels. It is advocated that critical conditions for ductile shaping may be most readily quantified on analogous S(P) plots, but with appropriate machining variable (grit size, depths of cut, infeed rate) replacing load P. Working in the ductile region offers the promise of compelling time and cost economies in prosthesis fabrication and preparation.


Subject(s)
Ceramics , Computer-Aided Design , Materials Testing , Tensile Strength , Flexural Strength
3.
Neurobiol Lang (Camb) ; 2(3): 372-388, 2021.
Article in English | MEDLINE | ID: mdl-34447943

ABSTRACT

Building a robust vocabulary in grade school is essential for academic success. Children from lower socioeconomic status (SES) households on average perform below their higher SES peers on word learning tasks, negatively impacting their vocabulary; however, significant variability exists within this group. Many children from low SES homes perform as well as, or better than, their higher SES peers on measures of word learning. The current study addresses what processes underlie this variability, by comparing the neural oscillations of 44 better versus worse word learners (ages 8-15 years) from lower SES households as they infer the meaning of unknown words. Better word learners demonstrated increases in theta and beta power as a word was learned, whereas worse word learners exhibited decreases in alpha power. These group differences in neural oscillatory engagement during word learning indicate there may be different strategies employed based on differences in children's skills. Notably, children with greater vocabulary knowledge are more likely to exhibit larger beta increases; a strategy which is associated with better word learning. This sheds new light on the mechanisms that support word learning in children from low SES households.

4.
Sci Rep ; 9(1): 7864, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31133652

ABSTRACT

We report on the influence of the Al content (from 3.5 to 54 at.%) on phase formation and magnetic properties in FeMnCoCrAl high entropy alloy thin film libraries. Al additions to FeMnCoCr crystallizing in the alpha-Mn structure cause the formation of the body centered cubic (BCC) structure. This is consistent with density functional theory predictions as Al additions give rise to a larger stability for the BCC phase compared to the face centered cubic phase (FCC) which can be rationalized by the formation of a pseudogap at the Fermi level indicating the stabilization of the BCC phase over the FCC phase. Al additions to paramagnetic FeMnCoCr induce ferromagnetism. The largest saturation magnetization was measured for the film containing 8 at.% of Al. As the concentration of non-ferromagnetic Al is increased beyond 8 at.%, the number density of the ferromagnetic species is decreased causing a concomitant decrease in magnetization. This trend is consistent with ab initio predictions of the Al concentration induced changes in the magnetic moment. Based on the experimental and theoretical results presented here the effect of the Al concentration on the phase formation and the magnetic properties of FeMnCoCrAl thin film library can be rationalized.

5.
RSC Adv ; 8(2): 606-618, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35538961

ABSTRACT

Dry reforming of methane (DRM) enables an efficient utilization of two abundant greenhouse gases by converting them into syngas, a versatile feedstock for chemical synthesis. Aiming for high catalyst performance and enhanced coke resistance, different preparation techniques of La-promoted Ni/γ-Al2O3 catalysts for DRM were compared facilitating structure-performance correlations. The studied synthesis techniques comprehend incipient wetness impregnation and co-precipitation as well as alternative techniques such as spray drying. All catalysts were fully characterized before and after reaction by N2-physisorption, XRD, H2-TPR and STEM-EDX elemental mapping. Additionally, a thorough investigation of carbon deposits has been carried out by TGA/DSC and STEM-EDX, respectively. The different preparation techniques led generally to very different physical properties, structure, chemical species and anti-coking properties of the catalyst. However, some catalysts with similar physicochemical characteristics differed in catalytic performance and coking resistance. Superior catalytic performance could be reached for catalysts prepared by spray drying and related to excellent Ni dispersion, strong metal-support interaction and very low coke formation of only 2.7% of the catalyst weight. After 6 h time on stream only minor sintering occurred, with few Ni nanoparticles up to 10 nm.

6.
Sci Rep ; 7(1): 17544, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29235523

ABSTRACT

We report on a thin film synthesis technique which allows for unprecedented control over the crystalline phase formation in metastable transition metal nitride based layers. For the model material system of V0.26Al0.74N, a complete transition from hexagonal to supersaturated cubic structure is achieved by tuning the incident energy, hence subplantation depth, of Al+ metal ions during reactive hybrid high power impulse magnetron sputtering of Al target and direct current magnetron sputtering of V target in Ar/N2 gas mixture. These findings enable the phase selective synthesis of novel metastable materials that combine excellent mechanical properties, thermal stability, and oxidation resistance.

7.
J Evol Biol ; 30(12): 2146-2155, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28902470

ABSTRACT

Many hypotheses explaining the evolution and maintenance of sexual cannibalism incorporate the nutritional aspect of the consumption of males. Most studies have focused on a fecundity advantage through consumption of a male; however, recent studies have raised the intriguing possibility that consumption of a male may also affect offspring quality. In particular, recent studies suggest prolonged survival for offspring from sexually cannibalistic females. Here, we measured the protein and lipid content of males compared to insect prey (crickets), quantified female nutrient intake of both prey types and finally assessed how sexual cannibalism affects female fecundity and spiderling quality in the orb-web spider Larinioides sclopetarius. We found no evidence that sexual cannibalism increased fecundity when compared to a female control group fed a cricket. Contrary to previous studies, spiderlings from females fed a male showed reduced survival under food deprivation compared to spiderlings from the control group. Offspring from females fed a male also tended to begin web construction sooner. The low lipid content of males compared to crickets may have reduced offspring survival duration. Whether additional proteins obtained through consumption of a male translate to enhanced silk production in offspring requires further investigation.


Subject(s)
Cannibalism , Sexual Behavior, Animal , Spiders/physiology , Animals , Biological Evolution , Female , Fertility , Male , Nutritive Value
8.
Anim Cogn ; 20(6): 1093-1106, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28831579

ABSTRACT

There is a long-standing debate as to whether social or physical environmental aspects drive the evolution and development of cognitive abilities. Surprisingly few studies make use of developmental plasticity to compare the effects of these two domains during development on behaviour later in life. Here, we present rearing effects on the development of learning abilities and social behaviour in the jumping spider Marpissa muscosa. These spiders are ideally suited for this purpose because they possess the ability to learn and can be reared in groups but also in isolation without added stress. This is a critical but rarely met requirement for experimentally varying the social environment to test its impact on cognition. We split broods of spiders and reared them either in a physically or in a socially enriched environment. A third group kept under completely deprived conditions served as a 'no-enrichment' control. We tested the spiders' learning abilities by using a modified T-maze. Social behaviour was investigated by confronting spiders with their own mirror image. Results show that spiders reared in groups outperform their conspecifics from the control, i.e. 'no-enrichment', group in both tasks. Physical enrichment did not lead to such an increased performance. We therefore tentatively suggest that growing up in contact with conspecifics induces the development of cognitive abilities in this species.


Subject(s)
Behavior, Animal , Learning , Social Behavior , Spiders/physiology , Aggression , Animals , Association Learning , Cognition , Female , Male , Reversal Learning , Social Environment
9.
Sci Rep ; 7(1): 984, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28428564

ABSTRACT

MAX-phase Cr2AlC containing thin films were synthesized by magnetron sputtering in an industrial system. Nanometre-scale 3D defects are observed near the boundary between regions of Cr2AlC and of the disordered solid solution (CrAl)xCy. Shrinkage of the Cr-Cr interplanar distance and elongation of the Cr-Al distance in the vicinity of the defects are detected using transmission electron microscopy. The here observed deformation surrounding the defects was described using density functional theory by comparing the DOS of bulk Cr2AlC with the DOS of a strained and unstrained Cr2AlC(0001) surface. From the partial density of states analysis, it can be learned that Cr-C bonds are stronger than Cr-Al bonds in bulk Cr2AlC. Upon Cr2AlC(0001) surface formation, both bonds are weakened. While the Cr-C bonds recover their bulk strength as Cr2AlC(0001) is strained, the Cr-Al bonds experience only a partial recovery, still being weaker than their bulk counterparts. Hence, the strain induced bond strengthening in Cr2AlC(0001) is larger for Cr d - C p bonds than for Cr d - Al p bonds. The here observed changes in bonding due to the formation of a strained surface are consistent with the experimentally observed elongation of the Cr-Al distance in the vicinity of nm-scale 3D defects in Cr2AlC thin films.

10.
Neurosci Biobehav Rev ; 46 Pt 4: 509-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25088579

ABSTRACT

Spiders are highly efficient predators in possession of exquisite sensory capacities for ambushing prey, combined with machinery for launching rapid and determined attacks. As a consequence, any sexually motivated approach carries a risk of ending up as prey rather than as a mate. Sexual selection has shaped courtship to effectively communicate the presence, identity, motivation and/or quality of potential mates, which help ameliorate these risks. Spiders communicate this information via several sensory channels, including mechanical (e.g. vibrational), visual and/or chemical, with examples of multimodal signalling beginning to emerge in the literature. The diverse environments that spiders inhabit have further shaped courtship content and form. While our understanding of spider neurobiology remains in its infancy, recent studies are highlighting the unique and considerable capacities of spiders to process and respond to complex sexual signals. As a result, the dangerous mating systems of spiders are providing important insights into how ecology shapes the evolution of communication systems, with future work offering the potential to link this complex communication with its neural processes.


Subject(s)
Predatory Behavior/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology , Spiders/physiology , Animals , Female , Male , Vibration
11.
J Phys Condens Matter ; 25(24): 245401, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23709492

ABSTRACT

The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.


Subject(s)
Alloys/chemistry , Elasticity , Iron/chemistry , Magnesium/chemistry , Metals, Heavy/chemistry , Quantum Theory , Chromium/chemistry , Cobalt/chemistry , Copper/chemistry , Nickel/chemistry
12.
J Phys Condens Matter ; 25(12): 125502, 2013 Mar 27.
Article in English | MEDLINE | ID: mdl-23448831

ABSTRACT

Using density functional theory, the effect of Si on the stability and electronic structure of γ- and α-Al2O3 has been investigated. The concentration range from 0 to 5 at.% is probed and the additive is positioned at different substitutional sites in the γ-phase. The calculations for (Al,Si)2O3 predict a trend towards spontaneous decomposition into α-/γ-Al2O3 and SiO2. Therefore, the formation of the metastable γ-(Al,Si)2O3 phase can only be expected during non-equilibrium processing where the decomposition is kinetically hindered. The Si-induced changes in stability of this metastable solid solution may be understood based on the electronic structure. As the Si concentration is increased, stiff silicon-oxygen bonds are formed giving rise to the observed stabilization of the γ-phase.

13.
J Phys Condens Matter ; 25(4): 045501, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23258257

ABSTRACT

In this work the electronic structure and mechanical properties of the phases X(2)BC with X =Ti, V, Zr, Nb, Mo, Hf, Ta, W (Mo(2)BC-prototype) were studied using ab initio calculations. As the valence electron concentration (VEC) per atom is increased by substitution of the transition metal X, the six very strong bonds between the transition metal and the carbon shift to lower energies relative to the Fermi level, thereby increasing the bulk modulus to values of up to 350 GPa, which corresponds to 93% of the value reported for c-BN. Systems with higher VEC appear to be ductile as inferred from both the more positive Cauchy pressure and the larger value of the bulk to shear modulus ratio (B/G). The more ductile behavior is a result of the more delocalized interatomic interactions due to larger orbital overlap in smaller unit cells. The calculated phase stabilities show an increasing trend as the VEC is decreased. This rather unusual combination of high stiffness and moderate ductility renders X(2)BC compounds with X = Ta, Mo and W as promising candidates for protection of cutting and forming tools.

14.
Phys Rev Lett ; 108(11): 117401, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22540506

ABSTRACT

The Fermi surface of graphite has been mapped out using de Haas-van Alphen (dHvA) measurements at low temperature with in-situ rotation. For tilt angles θ>60° between the magnetic field and the c axis, the majority electron and hole dHvA periods no longer follow a cos(θ) behavior demonstrating that graphite has a three-dimensional closed Fermi surface. The Fermi surface of graphite is accurately described by highly elongated ellipsoids. A comparison with the calculated Fermi surface suggests that the Slonczewski-Weiss-McClure trigonal warping parameter γ(3) is significantly larger than previously thought.

15.
J Phys Condens Matter ; 24(17): 175402, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22469705

ABSTRACT

A systematic ab initio molecular dynamics study was carried out to identify valence electron concentration and size induced changes on structure, elastic and magnetic properties for Co(43)Fe(20)Ta(5.5)X(31.5) (X=B, Si, P, S). Short range order, charge transfer and the bonding nature are analyzed by means of density of states, Bader decomposition and pair distribution function analysis. A clear trend of a decrease in density and bulk modulus as well as a weaker cohesion was observed as the valence electron concentration is increased by replacing B with Si and further with P and S. These changes may be understood based on increased interatomic distances, variations in coordination numbers and the electronic structure changes; as the valence electron concentration of X is increased the X bonding becomes more ionic, which disrupts the overall metallic interactions, leading to lower cohesion and stiffness. The highest magnetic moments for the transition metals are identified for X=S, despite the fact that the presence of X generally reduces the magnetic moment of Co. Furthermore, this study reveals an extended diagonal relationship between B and P within these amorphous alloys. Based on quantum mechanical data we identify composition induced changes in short range order, charge transfer and bonding nature and link them to density, elasticity and magnetism. The interplay between transition metal d band filling and s-d hybridization was identified to be a key materials design criterion.


Subject(s)
Cobalt/chemistry , Iron/chemistry , Phosphorus/chemistry , Physics/methods , Silicon/chemistry , Sulfur/chemistry , Tantalum/chemistry , Crystallization , Elasticity , Glass , Ions , Magnetics , Materials Testing , Metals/chemistry , Quantum Theory , Scattering, Radiation
16.
J Phys Condens Matter ; 23(47): 475401, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-22056956

ABSTRACT

Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm(-3) for Co(43)Fe(20)Ta(5.5)B(31.5) and 8.42 g cm(-3) for Co(45.5)Fe(24)Ta(6)B(24.5), as well as the Young's moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness.

17.
J Phys Condens Matter ; 23(24): 246003, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21613729

ABSTRACT

We have studied the influence of additions of Al and Si on the lattice stability of face-centred-cubic (fcc) versus hexagonal-closed-packed (hcp) Fe-Mn random alloys, considering the influence of magnetism below and above the fcc Néel temperature. Employing two different ab initio approaches with respect to basis sets and treatment of magnetic and chemical disorder, we are able to quantify the predictive power of the ab initio methods. We find that the addition of Al strongly stabilizes the fcc lattice independent of the regarded magnetic states. For Si a much stronger dependence on magnetism is observed. Compared to Al, almost no volume change is observed as Si is added to Fe-Mn, indicating that the electronic contributions are responsible for stabilization/destabilization of the fcc phase.


Subject(s)
Aluminum/chemistry , Iron/chemistry , Magnetics , Manganese/chemistry , Models, Chemical , Silicon/chemistry , Alloys/chemistry , Computer Simulation
18.
J Phys Condens Matter ; 22(29): 295402, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-21399304

ABSTRACT

We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Néel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Néel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

19.
Phys Rev Lett ; 102(16): 166401, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518730

ABSTRACT

We describe an infrared transmission study of a thin layer of bulk graphite in magnetic fields up to B=34 T. Two series of absorption lines whose energy scales as sqrt[B] and B are present in the spectra and identified as contributions of massless holes at the H point and massive electrons in the vicinity of the K point, respectively. We find that the optical response of the K point electrons corresponds, over a wide range of energy and magnetic field, to a graphene bilayer with an effective interlayer coupling 2gamma_{1}, twice the value for a real graphene bilayer, which reflects the crystal ordering of bulk graphite along the c axis. The K point electrons thus behave as massive Dirac fermions with a mass enhanced twice in comparison to a true graphene bilayer.

20.
Phys Rev Lett ; 102(16): 166403, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518732

ABSTRACT

Magnetotransport of natural graphite and highly oriented pyrolytic graphite has been measured at mK temperatures. Quantum oscillations for both electron and hole carriers are observed with an orbital angular momentum quantum number up to N approximately 90. A remarkable agreement is obtained when comparing the data and the predictions of the Slonczewski-Weiss-McClure tight binding model for massive fermions. No evidence for Dirac fermions is observed in the transport data which are dominated by the crossing of the Landau bands at the Fermi level, corresponding to dE/dk_{z}=0, which occurs away from the H point where Dirac fermions are expected.

SELECTION OF CITATIONS
SEARCH DETAIL
...