Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Cancer ; 13(1): 6-28, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344449

ABSTRACT

Background: Combined hepatocellular-cholangiocarcinoma (cHCC-iCCA) is a rare type of primary liver cancer displaying characteristics of both hepatocytic and cholangiocytic differentiation. Summary: Because of its aggressive nature, patients with cHCC-iCCA exhibit a poorer prognosis than those with HCC. Surgical resection and liver transplantation may be considered curative treatment approaches; however, only a minority of patients are eligible at the time of diagnosis, and postoperative recurrence rates are high. For cases that are not eligible for surgery, locoregional and systemic therapy are often administered based on treatment protocols applied for HCC or iCCA. Owing to the rarity of this cancer, there are still no established standard treatment protocols; therefore, the choice of therapy is often personalized and guided by the suspected predominant component. Further, the genomic and molecular heterogeneity of cHCC-iCCA can severely compromise the efficacy of the available therapies. Key Messages: In the present review, we summarize the latest advances in cHCC-iCCA and attempt to clarify its terminology and molecular biology. We provide an overview of the etiology of cHCC-iCCA and present new insights into the molecular pathology of this disease that could contribute to further studies aiming to improve the patient outcomes through new systemic therapies.

2.
Aging Dis ; 15(1): 338-356, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37307826

ABSTRACT

Primary sclerosing cholangitis (PSC) represents a chronic liver disease characterized by poor prognosis and lacking causal treatment options. Yes-associated protein (YAP) functions as a critical mediator of fibrogenesis; however, its therapeutic potential in chronic biliary diseases such as PSC remains unestablished. The objective of this study is to elucidate the possible significance of YAP inhibition in biliary fibrosis by examining the pathophysiology of hepatic stellate cells (HSC) and biliary epithelial cells (BEC). Human liver tissue samples from PSC patients were analyzed to assess the expression of YAP/connective tissue growth factor (CTGF) relative to non-fibrotic control samples. The pathophysiological relevance of YAP/CTGF in HSC and BEC was investigated in primary human HSC (phHSC), LX-2, H69, and TFK-1 cell lines through siRNA or pharmacological inhibition utilizing verteporfin (VP) and metformin (MF). The Abcb4-/- mouse model was employed to evaluate the protective effects of pharmacological YAP inhibition. Hanging droplet and 3D matrigel culture techniques were utilized to investigate YAP expression and activation status of phHSC under various physical conditions. YAP/CTGF upregulation was observed in PSC patients. Silencing YAP/CTGF led to inhibition of phHSC activation and reduced contractility of LX-2 cells, as well as suppression of epithelial-mesenchymal transition (EMT) in H69 cells and proliferation of TFK-1 cells. Pharmacological inhibition of YAP mitigated chronic liver fibrosis in vivo and diminished ductular reaction and EMT. YAP expression in phHSC was effectively modulated by altering extracellular stiffness, highlighting YAP's role as a mechanotransducer. In conclusion, YAP regulates the activation of HSC and EMT in BEC, thereby functioning as a checkpoint of fibrogenesis in chronic cholestasis. Both VP and MF demonstrate effectiveness as YAP inhibitors, capable of inhibiting biliary fibrosis. These findings suggest that VP and MF warrant further investigation as potential therapeutic options for the treatment of PSC.


Subject(s)
Cholestasis , Hepatic Stellate Cells , Mice , Animals , Humans , Liver Cirrhosis/drug therapy , Fibrosis , Cholestasis/metabolism , Bile Ducts , Epithelium/metabolism
3.
Article in English | MEDLINE | ID: mdl-37681832

ABSTRACT

Water systems in health care facilities can form reservoirs for Gram-negative bacteria. While planning a new neonatal intensive care unit (NICU), we performed a retrospective evaluation of potential risks from water-diverting systems on the existing NICU of our tertiary care University Hospital. During 2017 to 2023, we recorded nine nosocomial cluster events with bacterial pathogens in our NICU. Of these, three clusters of Gram-negative bacteria were potentially related to sink drains: A Klebsiella oxytoca, a Pseudomonas aeruginosa, and an Enterobacter hormaechei cluster were uncovered by clinical routine screening of patients and breastmilk samples. They were confirmed using whole-genome sequencing and a subsequent core genome multilocus sequence typing (cgMLST) algorithm. Our observations highlight that the implementation of sink drains in a NICU may have negative effects on patients' safety. Construction planning should concentrate on the avoidance of washbasins in patient rooms when redesigning sensitive areas such as NICUs.


Subject(s)
Algorithms , Intensive Care Units, Neonatal , Infant, Newborn , Humans , Retrospective Studies , Health Facilities , Milk, Human
SELECTION OF CITATIONS
SEARCH DETAIL
...