Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(7): 2677-2689, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37367934

ABSTRACT

Matrix metalloproteinase (MMP)-sensitive hydrogels are promising for cartilage tissue engineering due to cell-mediated control over hydrogel degradation. However, any variability in MMP, tissue inhibitors of matrix metalloproteinase (TIMP), and/or extracellular matrix (ECM) production among donors will impact neotissue formation in the hydrogels. The goal for this study was to investigate the impact of inter- and intra-donor variability on the hydrogel-to-tissue transition. Transforming growth factor ß3 was tethered into the hydrogel to maintain the chondrogenic phenotype and support neocartilage production, allowing the use of chemically defined medium. Bovine chondrocytes were isolated from two donor groups, skeletally immature juvenile and skeletally mature adult donors (inter-donor variability) and three donors within each group (intra-donor group variability). While the hydrogel supported neocartilaginous growth by all donors, donor age impacted MMP, TIMP, and ECM synthesis rates. Of the MMPs and TIMPs studied, MMP-1 and TIMP-1 were the most abundantly produced by all donors. Adult chondrocytes secreted higher levels of MMPs, which was accompanied by higher production of TIMPs. Juvenile chondrocytes exhibited more rapid ECM growth. By day 29, juvenile chondrocytes had surpassed the gel-to-tissue transition. On the contrary, the adult donors had a percolated polymer network indicating that despite higher levels of MMPs the gel-to-transition had not yet been achieved. The intra-donor group variability of MMP, TIMP, and ECM production was higher in adult chondrocytes but did not impact the extent of the gel-to-tissue transition. In summary, age-dependent inter-donor variations in MMPs and TIMPs significantly impact the timing of the gel-to-tissue transition in MMP-sensitive hydrogels.


Subject(s)
Cartilage , Chondrocytes , Animals , Cattle , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Hydrogels/pharmacology , Hydrogels/metabolism , Biocompatible Materials/metabolism , Regeneration
2.
J Mater Chem B ; 8(14): 2775-2791, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32155233

ABSTRACT

Enzyme-sensitive hydrogels containing encapsulated chondrocytes are a promising platform for cartilage tissue engineering. However, the growth of neotissue is closely coupled to the degradation of the hydrogel and is further complicated due to the encapsulated cells serving as the enzyme source for hydrogel degradation. To better understand these coupled processes, this study combined experimental and computational methods to analyze the transition from hydrogel to neotissue in a biomimetic MMP-sensitive poly(ethylene glycol) (PEG) hydrogel with encapsulated chondrocytes. A physics-based computational model that describes spatial heterogeneities in cell distribution was used. Experimentally, cell-laden hydrogels were cultured for six weeks under free swelling or subjected daily to one-hour of dynamic compressive loading. Extracellular matrix (ECM) synthesis rates were used as model inputs, and the model was fit to the experimentally determined construct modulus over time for the free swelling condition. Experimentally, ECM accumulation comprising collagen II and aggrecan increased over time concomitant with hydrogel degradation observed by a loss in PEG. Simulations demonstrated rapid degradation in regions of high cell density (i.e., cell clusters) reaching complete degradation by day 13, which facilitated localized ECM growth. Regions of low cell density degraded more slowly, had limited ECM, and led to the decrease in construct modulus during the first two weeks. The primary difference between the two culture environments was greater ECM accumulation in the clusters under free swelling, which facilitated a faster recovery in construct modulus. By 6 weeks the compressive modulus increased 2.5-fold to 107 kPa under free swelling, but dropped 1.6-fold to 26 kPa under loading. In summary, this biomimetic MMP-sensitive hydrogel supports neocartilage growth by facilitating rapid ECM growth within cell clusters, which was followed by slower growth in the rest of the hydrogel. Subtle temporal differences in hydrogel degradation and ECM accumulation, however, had a significant impact on the evolving mechanical properties.


Subject(s)
Biocompatible Materials/metabolism , Cartilage/metabolism , Hydrogels/metabolism , Matrix Metalloproteinases/metabolism , Polyethylene Glycols/metabolism , Animals , Biocompatible Materials/chemistry , Cartilage/chemistry , Cattle , Cells, Cultured , Chondrocytes/chemistry , Chondrocytes/metabolism , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Hydrogels/chemistry , Matrix Metalloproteinases/chemistry , Models, Molecular , Polyethylene Glycols/chemistry
3.
Acta Biomater ; 93: 97-110, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30914256

ABSTRACT

While matrix-assisted autologous chondrocyte implantation has emerged as a promising therapy to treat focal chondral defects, matrices that support regeneration of hyaline cartilage remain challenging. The goal of this work was to investigate the potential of a matrix metalloproteinase (MMP)-sensitive poly(ethylene glycol) (PEG) hydrogel containing the tethered growth factor, transforming growth factor ß3 (TGF-ß3), and compare cartilage regeneration in vitro and in vivo. The in vitro environment comprised chemically-defined medium while the in vivo environment utilized the subcutaneous implant model in athymic mice. Porcine chondrocytes were isolated and expanded in 2D culture for 10 days prior to encapsulation. The presence of tethered TGF-ß3 reduced cell spreading. Chondrocyte-laden hydrogels were analyzed for total sulfated glycosaminoglycan and collagen contents, MMP activity, and spatial deposition of aggrecan, decorin, biglycan, and collagens type II and I. The total amount of extracellular matrix (ECM) deposited in the hydrogel constructs was similar in vitro and in vivo. However, the in vitro environment was not able to support long-term culture up to 64 days of the engineered cartilage leading to the eventual breakdown of aggrecan. The in vivo environment, on the other hand, led to more elaborate ECM, which correlated with higher MMP activity, and an overall higher quality of engineered tissue that was rich in aggrecan, decorin, biglycan and collagen type II with minimal collagen type I. Overall, the MMP-sensitive PEG hydrogel containing tethered TGF-ß3 is a promising matrix for hyaline cartilage regeneration in vivo. STATEMENT OF SIGNIFICANCE: Regenerating hyaline cartilage remains a significant clinical challenge. The resultant repair tissue is often fibrocartilage, which long-term cannot be sustained. The goal of this study was to investigate the potential of a synthetic hydrogel matrix containing peptide crosslinks that can be degraded by enzymes secreted by encapsulated cartilage cells (i.e., chondrocytes) and tethered growth factors, specifically TGF-ß3, to provide localized chondrogenic cues to the cells. This hydrogel led to hyaline cartilage-like tissue growth in vitro and in vivo, with minimal formation of fibrocartilage. However, the tissue formed in vitro, could not be maintained long-term. In vivo this hydrogel shows great promise as a potential matrix for use in regenerating hyaline cartilage.


Subject(s)
Chondrocytes/metabolism , Hyaline Cartilage/metabolism , Hydrogels/chemistry , Matrix Metalloproteinases/metabolism , Polyethylene Glycols/chemistry , Transforming Growth Factor beta3/metabolism , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Cells, Cultured , Chondrogenesis , Collagen/chemistry , Compressive Strength , Drug Delivery Systems , Drug Liberation , Extracellular Matrix/metabolism , Fibrocartilage/chemistry , Glycosaminoglycans/chemistry , Humans , Mice , Models, Animal , Surface Properties , Tissue Engineering
4.
Soft Matter ; 13(28): 4841-4855, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28613313

ABSTRACT

Degradable hydrogels have been developed to provide initial mechanical support to encapsulated cells while facilitating the growth of neo-tissues. When cells are encapsulated within degradable hydrogels, the process of neo-tissue growth is complicated by the coupled phenomena of transport of large extracellular matrix macromolecules and the rate of hydrogel degradation. If hydrogel degradation is too slow, neo-tissue growth is hindered, whereas if it is too fast, complete loss of mechanical integrity can occur. Therefore, there is a need for effective modelling techniques to predict hydrogel designs based on the growth parameters of the neo-tissue. In this article, hydrolytically degradable hydrogels are investigated due to their promise in tissue engineering. A key output of the model focuses on the ability of the construct to maintain overall structural integrity as the construct transitions from a pure hydrogel to engineered neo-tissue. We show that heterogeneity in cross-link density and cell distribution is the key to this successful transition and ultimately to achieve tissue growth. Specifically, we find that optimally large regions of weak cross-linking around cells in the hydrogel and well-connected and dense cell clusters create the optimum conditions needed for neo-tissue growth while maintaining structural integrity. Experimental observations using cartilage cells encapsulated in a hydrolytically degradable hydrogel are compared with model predictions to show the potential of the proposed model.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cartilage/drug effects , Cartilage/physiology , Hydrogels/chemistry , Hydrogels/pharmacology , Regeneration/drug effects , Cartilage/cytology , Diffusion , Elastic Modulus , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Kinetics , Tissue Engineering , Tissue Scaffolds/chemistry
5.
Biotechnol Bioeng ; 114(9): 2096-2108, 2017 09.
Article in English | MEDLINE | ID: mdl-28436002

ABSTRACT

Poly(ethylene glycol) (PEG) hydrogels are highly tunable platforms that are promising cell delivery vehicles for chondrocytes and cartilage tissue engineering. In addition to characterizing the type of extracellular matrix (ECM) that forms, understanding the types of proteins that are secreted by encapsulated cells may be important. Thus, the objectives for this study were to characterize the secretome of chondrocytes encapsulated in PEG hydrogels and determine whether the secretome varies as a function of hydrogel stiffness and culture condition. Bovine chondrocytes were encapsulated in photoclickable PEG hydrogels with a compressive modulus of 8 and 46 kPa and cultured under free swelling or dynamic compressive loading conditions. Cartilage ECM deposition was assessed by biochemical assays and immunohistochemistry. The conditioned medium was analyzed by liquid chromatography-tandem mass spectrometry. Chondrocytes maintained their phenotype within the hydrogels and deposited cartilage-specific ECM that increased over time and included aggrecan and collagens II and VI. Analysis of the secretome revealed a total of 64 proteins, which were largely similar among all experimental conditions. The identified proteins have diverse functions such as biological regulation, response to stress, and collagen fibril organization. Notably, many of the proteins important to the assembly of a collagen-rich cartilage ECM were identified and included collagen types II(α1), VI (α1, α2, and α3), IX (α1), XI (α1 and α2), and biglycan. In addition, many of the other identified proteins have been reported to be present within cell-secreted exosomes. In summary, chondrocytes encapsulated within photoclickable PEG hydrogels secrete many types of proteins that diffuse out of the hydrogel and which have diverse functions, but which are largely preserved across different hydrogel culture environments. Biotechnol. Bioeng. 2017;114: 2096-2108. © 2017 Wiley Periodicals, Inc.


Subject(s)
Chondrocytes/metabolism , Click Chemistry/methods , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Proteome/metabolism , Secretory Pathway/physiology , Animals , Cattle , Cells, Cultured , Chondrocytes/transplantation , Hydrogels/radiation effects , Photochemistry
6.
ACS Biomater Sci Eng ; 3(10): 2480-2492, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-29732400

ABSTRACT

Hydrolytically degradable poly(ethylene glycol) (PEG) hydrogels are promising platforms for cell encapsulation and tissue engineering. However, hydrolysis leads to bulk degradation and a decrease in hydrogel mechanical integrity. Despite these challenges, hydrolytically degradable hydrogels have supported macroscopic neotissue growth. The goal of this study was to combine experimental methods with a multiscale mathematical model to analyze hydrogel degradation concomitant with neocartilage growth in PEG hydrogels. Primary bovine chondrocytes were encapsulated at increasing densities (50, 100, and 150 million cells/mL of precursor solution) in a radical-mediated photoclickable hydrogel formed from 8-arm PEG-co-caprolactone end-capped with norbornene and cross-linked with PEG dithiol. Two observations were made in the experimental system: (1) the cell distribution was not uniform and cell clustering was evident, which increased with increasing cell density and (2) a significant decrease in the initial hydrogel compressive modulus was observed with increasing cell concentration. By introducing heterogeneities in the form of cell clusters and spatial variations in the network structure around cells, the mathematical model explained the drop in initial modulus and captured the experimentally observed spatial evolution of ECM and the construct modulus as a function of cell density and culture time. Overall, increasing cell density led to improved ECM formation, ECM connectivity, and overall modulus. This study strongly points to the importance of heterogeneities within a cell-laden hydrogel in retaining mechanical integrity as the construct transitions from hydrogel to neotissue.

7.
Mar Pollut Bull ; 68(1-2): 64-70, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23385120

ABSTRACT

The toxicity of the water associated fraction (WAF) of Alaska North Slope Crude oil (ANSC), Corexit 9500A and the dispersant enhanced WAF (DEWAF) of ANSC:Corexit 9500A mixtures were examined on the model ammonia oxidizing bacterium, Nitrosomonas europaea. Corexit 9500A was not toxic at environmentally relevant concentrations. Corexit 9500A greatly increased the toxicity of ANSC by increasing the chemical oxygen demand (COD) of the DEWAF. However, a majority of the DEWAF compounds were not toxic to N. europaea. Weathered WAF and DEWAF were not toxic to N. europaea even though their COD did not change compared to non-weathered controls, suggesting that toxicity was due to a small volatile fraction of the ANSC. The over-expression of the NE1545 gene, a marker for aromatic hydrocarbon exposure, in N. europaea cells exposed to WAF and DEWAF suggests that aromatic hydrocarbons are bioavailable to the cells and may play a role in the observed toxicity.


Subject(s)
Lipids/toxicity , Nitrosomonas europaea/drug effects , Petroleum/toxicity , Surface-Active Agents/toxicity , Water Pollutants, Chemical/toxicity , Alaska , Ammonia/analysis , Ammonia/metabolism , Nitrosomonas europaea/physiology , Water Pollutants, Chemical/analysis , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...