Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(4): e11250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38660467

ABSTRACT

The "Amazon tipping point" is a global change scenario resulting in replacement of upland terra-firme forests by large-scale "savannization" of mostly southern and eastern Amazon. Reduced rainfall accompanying the Last Glacial Maximum (LGM) has been proposed to have acted as such a tipping point in the past, with the prediction that terra-firme inhabiting species should have experienced reductions in population size as drier habitats expanded. Here, we use whole-genomes of an Amazonian endemic organism (Scale-backed antbirds - Willisornis spp.) sampled from nine populations across the region to test this historical demography scenario. Populations from southeastern Amazonia and close to the Amazon-Cerrado ecotone exhibited a wide range of demographic patterns, while most of those from northern and western Amazonia experienced uniform expansions between 400 kya and 80-60 kya, with gradual declines toward 20 kya. Southeastern populations of Willisornis were the last to diversify and showed smaller heterozygosity and higher runs of homozygosity values than western and northern populations. These patterns support historical population declines throughout the Amazon that affected more strongly lineages in the southern and eastern areas, where historical "tipping point" conditions existed due to the widespread replacement of humid forest by drier and open vegetation during the LGM.

2.
Mar Pollut Bull ; 157: 111302, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32658670

ABSTRACT

Concentration of bacterial species indicative of fecal contamination in the gut of mangrove oysters (Crassostrea gasar) is a major concern for public health and food surveillance. Our work aimed to determine the occurrence, antibiotic-resistance, phylogenetic profile and virulence of Escherichia coli strains isolated from C. gasar farmed in four estuaries of Amazonia. Santo Antônio de Urindeua was the sampling point with the highest number of E. coli cells in oyster samples (104 per 100 g of sample). Twenty-four isolates (52.2%) showed resistance to cephalotin and 18 to amoxicillin (39.1%). Eighteen clonal populations were determined by rep-PCR and were mainly affiliated to the pathogenic and commensal phylo-groups B1 and D. The presence of elt genes suggests that 10 of these clones belong to the Enterotoxigenic Escherichia coli pathotype. Plasmids, mostly of the F incompatibility group, were detected in the majority of the strains. All isolates were susceptible to last-resort antibiotics.


Subject(s)
Crassostrea , Escherichia coli , Animals , Anti-Bacterial Agents , Brazil , Estuaries , Phylogeny , Virulence
3.
Curr Biol ; 28(24): 4001-4008.e7, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30528582

ABSTRACT

Parrots are one of the most distinct and intriguing groups of birds, with highly expanded brains [1], highly developed cognitive [2] and vocal communication [3] skills, and a long lifespan compared to other similar-sized birds [4]. Yet the genetic basis of these traits remains largely unidentified. To address this question, we have generated a high-coverage, annotated assembly of the genome of the blue-fronted Amazon (Amazona aestiva) and carried out extensive comparative analyses with 30 other avian species, including 4 additional parrots. We identified several genomic features unique to parrots, including parrot-specific novel genes and parrot-specific modifications to coding and regulatory sequences of existing genes. We also discovered genomic features under strong selection in parrots and other long-lived birds, including genes previously associated with lifespan determination as well as several hundred new candidate genes. These genes support a range of cellular functions, including telomerase activity; DNA damage repair; control of cell proliferation, cancer, and immunity; and anti-oxidative mechanisms. We also identified brain-expressed, parrot-specific paralogs with known functions in neural development or vocal-learning brain circuits. Intriguingly, parrot-specific changes in conserved regulatory sequences were overwhelmingly associated with genes that are linked to cognitive abilities and have undergone similar selection in the human lineage, suggesting convergent evolution. These findings bring novel insights into the genetics and evolution of longevity and cognition, as well as provide novel targets for exploring the mechanistic basis of these traits.


Subject(s)
Amazona/physiology , Biological Evolution , Cognition , Genome , Longevity/genetics , Amazona/genetics , Animals , Male
4.
Biomed Res Int ; 2016: 7863706, 2016.
Article in English | MEDLINE | ID: mdl-27595107

ABSTRACT

Exiguobacterium antarcticum B7 is extremophile Gram-positive bacteria able to survive in cold environments. A key factor to understanding cold adaptation processes is related to the modification of fatty acids composing the cell membranes of psychrotrophic bacteria. In our study we show the in silico reconstruction of the fatty acid biosynthesis pathway of E. antarcticum B7. To build the stoichiometric model, a semiautomatic procedure was applied, which integrates genome information using KEGG and RAST/SEED. Constraint-based methods, namely, Flux Balance Analysis (FBA) and elementary modes (EM), were applied. FBA was implemented in the sense of hexadecenoic acid production maximization. To evaluate the influence of the gene expression in the fluxome analysis, FBA was also calculated using the log2⁡FC values obtained in the transcriptome analysis at 0°C and 37°C. The fatty acid biosynthesis pathway showed a total of 13 elementary flux modes, four of which showed routes for the production of hexadecenoic acid. The reconstructed pathway demonstrated the capacity of E. antarcticum B7 to de novo produce fatty acid molecules. Under the influence of the transcriptome, the fluxome was altered, promoting the production of short-chain fatty acids. The calculated models contribute to better understanding of the bacterial adaptation at cold environments.


Subject(s)
Bacillales/genetics , Bacillales/metabolism , Computational Biology/methods , Fatty Acids/biosynthesis , Fatty Acids/metabolism , Metabolic Networks and Pathways/genetics , Databases, Genetic , Genome, Bacterial
5.
BMC Res Notes ; 9(1): 447, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27646396

ABSTRACT

BACKGROUND: FapR protein from the psychrotrophic species Exiguobacterium antarcticum B7 was expressed and purified, and subsequently evaluated for its capacity to bind to the promoter regions of the fabH1-fabF and fapR-plsX-fabD-fabG operons, using electrophoretic mobility shift assay. The genes that compose these operons encode for enzymes involved in the de novo synthesis of fatty acids molecules. In Bacillus subtilis, FapR regulates the expression of these operons, and consequently has influence in the synthesis of long or short-chain fatty acids. To analyze the bacterial cold adaptation, this is an important metabolic pathway because psychrotrophic microrganisms tend to synthesize short and branched-chain unsaturated fatty acids at cold to maintain cell membrane fluidity. RESULTS: In this work, it was observed that recombinant protein was able to bind to the promoter of the fully amplified fabH1-fabF and fapR-plsX-fabD-fabG operons. However, FapR was unable to bind to the promoter of fapR-plsX-fabD-fabG operon when synthesized only up to the protein-binding palindrome 5'-TTAGTACCAGATACTAA-3', thus showing the importance of the entire promoter sequence for the correct protein-DNA interaction. CONCLUSIONS: Through this observation, we demonstrate that the FapR protein possibly regulates the same operons as described for other species, which emphasizes its importance to cold adaptation process of E. antarcticum B7, a psychrotrophic bacterium isolated at Antarctica.


Subject(s)
Bacillus/metabolism , Bacterial Proteins/metabolism , Fatty Acids/biosynthesis , Antarctic Regions , Bacillus/isolation & purification , Base Sequence , Electrophoretic Mobility Shift Assay
6.
Data Brief ; 5: 963-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26702428

ABSTRACT

Corynebacterium pseudotuberculosis causes significant loss to goat and sheep farmers because it is the causal agent of the infectious disease caseous lymphadenitis, which may lead to outcomes ranging from skin injury to animal death (Ruiz et al., 2011) [1]. This bacterium was grown under osmotic (2 M), acid (pH) and heat (50 °C) stress and under control (Normal-BHI brain heart infusion) conditions, which simulate the conditions faced by the bacteria during the infectious process. Subsequently, cDNA of each condition was sequenced by the SOLiD3 Plus platform using the RNA-Seq technique [2], [3], [4]. The data produced was processed to evaluate the differential gene expression, which is helpful to understand the adaptation mechanisms during the infection in the host. The sequencing data of all conditions are available in the European Bioinformatics Institute (EBI) repository under accession number E-MTAB-2017.

7.
Genet Mol Biol ; 38(2): 227-30, 2015 May.
Article in English | MEDLINE | ID: mdl-26273227

ABSTRACT

Several studies of the physiological responses of different organisms exposed to extremely low-frequency electromagnetic fields (ELF-EMF) have been described. In this work, we report the minimal effects of in situ exposure to ELF-EMF on the global protein expression of Chromobacterium violaceum using a gel-based proteomic approach. The protein expression profile was only slightly altered, with five differentially expressed proteins detected in the exposed cultures; two of these proteins (DNA-binding stress protein, Dps, and alcohol dehydrogenase) were identified by MS/MS. The enhanced expression of Dps possibly helped to prevent physical damage to DNA. Although small, the changes in protein expression observed here were probably beneficial in helping the bacteria to adapt to the stress generated by the electromagnetic field.

8.
Gene ; 563(2): 165-71, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25796604

ABSTRACT

BACKGROUND: With the emergence of large-scale sequencing platforms since 2005, there has been a great revolution regarding methods for decoding DNA sequences, which have also affected quantitative and qualitative gene expression analyses through the RNA-Sequencing technique. However, issues related to the amount of data required for the analyses have been considered because they affect the reliability of the experiments. Thus, RNA depletion during sample preparation may influence the results. Moreover, because data produced by these platforms show variations in quality, quality filters are often used to remove sequences likely to contain errors to increase the accuracy of the results. However, when reads of quality filters are removed, the expression profile in RNA-Seq experiments may be influenced. RESULT: The present study aimed to analyze the impact of different quality filter values for Corynebacterium pseudotuberculosis (sequenced by SOLiD platform), Microcystis aeruginosa and Kineococcus radiotolerans (sequenced by Illumina platform) RNA-Seq data. Although up to 47.9% of the reads produced by the SOLiD technology were removed after the QV20 quality filter is applied, and 15.85% were removed from K. radiotolerans data set using the QV30 filter, Illumina data showed the largest number of unique differentially expressed genes after applying the most stringent filter (QV30), with 69 genes. In contrast, for SOLiD, the acid stress condition with the QV20 filter yielded only 41 unique differentially expressed genes. Even for the highest quality M. aeruginosa data, the quality filter affected the expression profile. The most stringent quality filter generated a greater number of unique differentially expressed genes: 9 for high molecular weight dissolved organic matter condition and 12 for low P conditions. CONCLUSION: Even high-accuracy sequencing technologies are subject to the influence of quality filters when evaluating RNA-Seq data using the reference approach.


Subject(s)
RNA/genetics , Sequence Analysis, RNA/methods , Corynebacterium pseudotuberculosis/genetics , Microcystis/genetics , Reproducibility of Results
9.
Genome Announc ; 2(6)2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25395628

ABSTRACT

The genome of Corynebacterium pseudotuberculosis MB20 bv. equi was sequenced using the Ion Personal Genome Machine (PGM) platform, and showed a size of 2,363,089 bp, with 2,365 coding sequences and a GC content of 52.1%. These results will serve as a basis for further studies on the pathogenicity of C. pseudotuberculosis bv. equi.

10.
BMC Genomics ; 15: 986, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25407400

ABSTRACT

BACKGROUND: Exiguobacterium antarcticum strain B7 is a Gram-positive psychrotrophic bacterial species isolated in Antarctica. Although this bacteria has been poorly studied, its genome has already been sequenced. Therefore, it is an appropriate model for the study of thermal adaptation. In the present study, we analyzed the transcriptomes and proteomes of E. antarcticum B7 grown at 0°C and 37°C by SOLiD RNA-Seq, Ion Torrent RNA-Seq and two-dimensional difference gel electrophoresis tandem mass spectrometry (2D-DIGE-MS/MS). RESULTS: We found expression of 2,058 transcripts in all replicates from both platforms and differential expression of 564 genes (absolute log2FC≥1, P-value<0.001) comparing the two temperatures by RNA-Seq. A total of 73 spots were differentially expressed between the two temperatures on 2D-DIGE, 25 of which were identified by MS/MS. Some proteins exhibited patterns of dispersion in the gel that are characteristic of post-translational modifications. CONCLUSIONS: Our findings suggest that the two sequencing platforms yielded similar results and that different omic approaches may be used to improve the understanding of gene expression. To adapt to low temperatures, E. antarcticum B7 expresses four of the six cold-shock proteins present in its genome. The cold-shock proteins were the most abundant in the bacterial proteome at 0°C. Some of the differentially expressed genes are required to preserve transcription and translation, while others encode proteins that contribute to the maintenance of the intracellular environment and appropriate protein folding. The results denote the complexity intrinsic to the adaptation of psychrotrophic organisms to cold environments and are based on two omic approaches. They also unveil the lifestyle of a bacterial species isolated in Antarctica.


Subject(s)
Adaptation, Physiological/genetics , Bacillaceae/genetics , Bacillaceae/physiology , Cold Temperature , Gene Expression Regulation, Bacterial , Genomics/methods , Bacillaceae/growth & development , Cell Membrane/metabolism , Cold Shock Proteins and Peptides/metabolism , Electrophoresis, Gel, Two-Dimensional , Gene Expression Profiling , Mass Spectrometry , Protein Biosynthesis , Protein Folding , Proteome/metabolism , Sequence Analysis, RNA , Transcription, Genetic
11.
BMC Genomics ; 15: 14, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24405787

ABSTRACT

BACKGROUND: The completion of whole-genome sequencing for Corynebacterium pseudotuberculosis strain 1002 has contributed to major advances in research aimed at understanding the biology of this microorganism. This bacterium causes significant loss to goat and sheep farmers because it is the causal agent of the infectious disease caseous lymphadenitis, which may lead to outcomes ranging from skin injury to animal death. In the current study, we simulated the conditions experienced by the bacteria during host infection. By sequencing transcripts using the SOLiDTM 3 Plus platform, we identified new targets expected to potentiate the survival and replication of the pathogen in adverse environments. These results may also identify possible candidates useful for the development of vaccines, diagnostic kits or therapies aimed at the reduction of losses in agribusiness. RESULTS: Under the 3 simulated conditions (acid, osmotic and thermal shock stresses), 474 differentially expressed genes exhibiting at least a 2-fold change in expression levels were identified. Important genes to the infection process were induced, such as those involved in virulence, defence against oxidative stress, adhesion and regulation, and many genes encoded hypothetical proteins, indicating that further investigation of the bacterium is necessary. The data will contribute to a better understanding of the biology of C. pseudotuberculosis and to studies investigating strategies to control the disease. CONCLUSIONS: Despite the veterinary importance of C. pseudotuberculosis, the bacterium is poorly characterised; therefore, effective treatments for caseous lymphadenitis have been difficult to establish. Through the use of RNAseq, these results provide a better biological understanding of this bacterium, shed light on the most likely survival mechanisms used by this microorganism in adverse environments and identify candidates that may help reduce or even eradicate the problems caused by this disease.


Subject(s)
Corynebacterium pseudotuberculosis/genetics , Genes, Bacterial , Stress, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Corynebacterium pseudotuberculosis/metabolism , Down-Regulation , Hydrogen-Ion Concentration , Osmotic Pressure , RNA, Untranslated/metabolism , Sequence Analysis, DNA , Sigma Factor/genetics , Sigma Factor/metabolism , Temperature , Up-Regulation
12.
PLoS One ; 8(1): e53818, 2013.
Article in English | MEDLINE | ID: mdl-23342011

ABSTRACT

Corynebacterium pseudotuberculosis is a facultative intracellular pathogen and the causative agent of several infectious and contagious chronic diseases, including caseous lymphadenitis, ulcerative lymphangitis, mastitis, and edematous skin disease, in a broad spectrum of hosts. In addition, Corynebacterium pseudotuberculosis infections pose a rising worldwide economic problem in ruminants. The complete genome sequences of 15 C. pseudotuberculosis strains isolated from different hosts and countries were comparatively analyzed using a pan-genomic strategy. Phylogenomic, pan-genomic, core genomic, and singleton analyses revealed close relationships among pathogenic corynebacteria, the clonal-like behavior of C. pseudotuberculosis and slow increases in the sizes of pan-genomes. According to extrapolations based on the pan-genomes, core genomes and singletons, the C. pseudotuberculosis biovar ovis shows a more clonal-like behavior than the C. pseudotuberculosis biovar equi. Most of the variable genes of the biovar ovis strains were acquired in a block through horizontal gene transfer and are highly conserved, whereas the biovar equi strains contain great variability, both intra- and inter-biovar, in the 16 detected pathogenicity islands (PAIs). With respect to the gene content of the PAIs, the most interesting finding is the high similarity of the pilus genes in the biovar ovis strains compared with the great variability of these genes in the biovar equi strains. Concluding, the polymerization of complete pilus structures in biovar ovis could be responsible for a remarkable ability of these strains to spread throughout host tissues and penetrate cells to live intracellularly, in contrast with the biovar equi, which rarely attacks visceral organs. Intracellularly, the biovar ovis strains are expected to have less contact with other organisms than the biovar equi strains, thereby explaining the significant clonal-like behavior of the biovar ovis strains.


Subject(s)
Corynebacterium/genetics , Genome, Bacterial/genetics , Animals , Gene Deletion , Genes, Bacterial/genetics , Genetic Variation , Genomic Islands/genetics , Multigene Family/genetics , Species Specificity , Virulence Factors/genetics
13.
Microb Biotechnol ; 6(2): 168-77, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23316806

ABSTRACT

Corynebacterium pseudotuberculosis equi is a Gram-positive pathogenic bacterium which affects a variety of hosts. Besides the great economic losses it causes to horse-breeders, this organism is also known to be an important infectious agent to cattle and buffaloes. As an outcome of the efforts in characterizing the molecular basis of its virulence, several complete genome sequences were made available in recent years, enabling the large-scale assessment of genes throughout distinct isolates. Meanwhile, the RNA-seq stood out as the technology of choice for comprehensive transcriptome studies, which may bring valuable information regarding active genomic regions, despite of the still impeditive associated costs. In an attempt to increase the use of generated reads per instrument run, by effectively eliminating unwanted rRNAs from total RNA samples without relying on any commercially available kits, we applied denaturing high-performance liquid chromatography (DHPLC) as an alternative method to assess the transcriptional profile of C. pseudotuberculosis. We have found that the DHPLC depletion method, allied to Ion Torrent sequencing, allows mapping of transcripts in a comprehensive way and identifying novel transcripts when a de novo approach is used. These data encourage us to use DHPLC in future transcriptional evaluations in C. pseudotuberculosis.


Subject(s)
Chromatography, High Pressure Liquid/methods , Corynebacterium pseudotuberculosis/metabolism , High-Throughput Nucleotide Sequencing/methods , Nucleic Acid Denaturation/genetics , RNA, Ribosomal/chemistry , Transcriptome , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Corynebacterium Infections/microbiology , Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis/classification , Corynebacterium pseudotuberculosis/genetics , Horse Diseases/microbiology , Horses/microbiology , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Species Specificity
14.
J Bacteriol ; 194(17): 4736-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22887652

ABSTRACT

Here, we report the whole-genome sequences of two ovine-pathogenic Corynebacterium pseudotuberculosis isolates: strain 3/99-5, which represents the first C. pseudotuberculosis genome originating from the United Kingdom, and 42/02-A, the second from Australia. These genome sequences will contribute to the objective of determining the global pan-genome of this bacterium.


Subject(s)
Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis/genetics , Genome, Bacterial , Sheep Diseases/microbiology , Animals , Australia , Base Sequence , Chromosome Mapping , Corynebacterium Infections/microbiology , Corynebacterium pseudotuberculosis/classification , Corynebacterium pseudotuberculosis/isolation & purification , Lymphadenitis/microbiology , Lymphadenitis/veterinary , Molecular Sequence Data , Scotland , Sequence Analysis, DNA , Sheep/microbiology
15.
J Bacteriol ; 194(16): 4476, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22843601

ABSTRACT

Corynebacterium pseudotuberculosis causes disease in several animal species, although distinct biovars exist that appear to be restricted to specific hosts. In order to facilitate a better understanding of the differences between biovars, we report here the complete genome sequence of the equine pathogen Corynebacterium pseudotuberculosis strain 1/06-A.


Subject(s)
Corynebacterium pseudotuberculosis/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Animals , Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis/isolation & purification , Horse Diseases/microbiology , Horses , Molecular Sequence Data , North America
16.
Integr Biol (Camb) ; 4(7): 789-94, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22641428

ABSTRACT

Corynebacterium pseudotuberculosis is a bacterium which causes diseases such as caseous lymphadenitis in small ruminants, resulting in large-scale economic losses for agribusiness worldwide. Consequently, this bacterium including its transcriptional profile analysis has been the focus of various studies. Identification of the transcripts that appear under conditions that simulate the environment encountered by this bacterial species in the host is of great importance in discovering new targets for the production of more efficient vaccines. We sequenced the cDNA of Corynebacterium pseudotuberculosis strain 1002, using the SOLiD V3 system, under the following conditions: osmotic stress (2 M), acidity (pH), heat shock (50 °C) and control condition (N). To identify the transcripts shared among the stimulons and integrate this information with the results from BLAST and BLAST2GO, we developed the software CoreStImulon (CSI) which allows the user to individually distinguish the genes in terms of their participation in biological processes, their function and cellular location. In the biosynthetic processes, eleven genes represented in the core stimulon and twenty genes in the control were observed. This validates the hypothesis that the organisms strategy for surviving in a hostile environment is through growth reduction. The oxidation reduction process, response to stress process, and cell adhesion are controlled by genes that contribute to bacterial cell maintenance under stress conditions; these could be involved in their pathogenicity. The methodology for identification of transcripts obtained by ab initio assembly and shared among the stimulons permitted candidates selection for vaccine studies. CSI is available at https://sourceforge.net/projects/corestimulon/.


Subject(s)
Computational Biology/methods , Corynebacterium pseudotuberculosis/genetics , Corynebacterium pseudotuberculosis/metabolism , Gene Expression Regulation, Bacterial , Bacterial Adhesion , DNA/metabolism , DNA, Complementary/metabolism , Gene Expression Profiling , Hydrogen-Ion Concentration , Osmosis , Oxidation-Reduction , Programming Languages , RNA, Messenger/metabolism , Software , Temperature , Transcription, Genetic
17.
Comput Biol Med ; 42(5): 538-41, 2012 May.
Article in English | MEDLINE | ID: mdl-22342425

ABSTRACT

Metalloendopeptidases are zinc-dependent hydrolases enzymes with many different roles in biological systems, ranging from remodeling conjunctive tissue to removing signaling sequences from nascent proteins. Here, we describe the three-dimensional structure of the metalloendopeptidase from Corynebacterium pseudotuberculosis generated by homology modeling and molecular dynamics. Analysis of key distances shows that His-132, Asp-136, His-211, Leu-212 and one molecule of water play an important role in the protein-Zn(2+) ion interaction. The model obtained may provide structural insights into this enzyme and can be useful for the design of new caseous lymphadenitis vaccines based on genetic attenuation from key point mutation.


Subject(s)
Corynebacterium pseudotuberculosis/enzymology , Metalloendopeptidases/chemistry , Amino Acid Sequence , Metalloendopeptidases/isolation & purification , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid
18.
Genes (Basel) ; 2(4): 736-47, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-24710289

ABSTRACT

Chromobacterium violaceum is a gram-negative betaproteobacterium that has been isolated from various Brazilian ecosystems. Its genome contains the cyn operon, which gives it the ability to metabolize highly toxic cyanate into ammonium and carbon dioxide. We used a proteomics approach to investigate the effects of cyanate on the metabolism of this bacterium. The proteome of cells grown with and without cyanate was compared on 2-D gels. Differential spots were digested and identified by mass spectrometry. The bacterium was able to grow at concentrations of up to 1 mM cyanate. Eighteen spots were differentially expressed in the presence of cyanate, of which 16 were downregulated and only two were upregulated. An additional 12 spots were detected only in extracts of cells unexposed to cyanate, and one was expressed only by the exposed cells. Fourteen spots were identified, corresponding to 13 different proteins. We conclude that cyanate promotes expression of enzymes that combat oxidative stress and represses enzymes of the citric acid cycle, strongly affecting the energetic metabolism of the cell. Other proteins that were under-expressed in bacteria exposed to cyanate are involved in amino-acid metabolism or are hypothetical proteins, demonstrating that cyanate also affects expression of genes that are not part of the cyn operon.

19.
Genet. mol. biol ; 31(1): 68-72, 2008. tab
Article in English | LILACS | ID: lil-476154

ABSTRACT

In this study, 15 microsatellite DNA loci used in comparative tests by the International Society for Animal Genetics were applied to the evaluation of genetic diversity and management, and the efficiency of paternity testing in Marajoara horses and Puruca ponies from the Marajó Archipelago. Based on the genotyping of 93 animals, mean allelic diversity was estimated as 9.14 and 7.00 for the Marajoara and Puruca breeds, respectively. While these values are similar to those recorded in most European breeds, mean levels of heterozygosity were much lower (Marajoara 49 percent, Puruca 40 percent), probably as a result of high levels of inbreeding in the Marajó populations. The mean informative polymorphic content of this 15-marker system was over 50 percent in both breeds, and was slightly higher in the Marajoara horses. The discriminative power and exclusion probabilities derived from this system were over 99 percent for both populations, emphasizing the efficacy of these markers for paternity testing and genetic management in the two breeds.


Subject(s)
Animals , Horses/genetics , DNA, Satellite/genetics , Genetic Variation , Brazil , Microsatellite Repeats , Paternity , Pedigree
20.
Genet Mol Res ; 3(1): 181-94, 2004 Mar 31.
Article in English | MEDLINE | ID: mdl-15100998

ABSTRACT

Chromobacterium violaceum is a Gram-negative bacterium found in a wide variety of tropical and subtropical ecosystems. The complete genome sequence of C. violaceum ATCC 12472 is now available, and it has considerable biotechnological potential for various applications, such as environmental detoxification, as well as medical and agricultural use. We examined the biotechnological potential of C. violaceum for environmental detoxification. Three operons, comprising the ars operon, involved in arsenic resistance, the cyn operon, involved in cyanate detoxification, and the hcn operon, encoding a cyanase, responsible for biogenic production of cyanide, as well as an open reading frame, encoding an acid dehalogenase, were analyzed in detail. Probable catalytic mechanisms for the enzymes were determined, based on amino acid sequence comparisons and on published structural information for these types of proteins.


Subject(s)
Bacterial Proteins/genetics , Biotechnology , Chromobacterium/genetics , Arsenic/metabolism , Arsenic/pharmacology , Bacterial Proteins/metabolism , Base Sequence , Biodegradation, Environmental , Chromobacterium/metabolism , Cyanides/metabolism , Drug Resistance, Bacterial/genetics , Hydrolases/metabolism , Molecular Sequence Data , Open Reading Frames/genetics , Operon/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...