Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(2): 1114-1122, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36594483

ABSTRACT

On-site wastewater treatment plants (OSTs) often lack monitoring, resulting in unreliable treatment performance. They thus appear to be a stopgap solution despite their potential contribution to circular water management. Low-maintenance but inaccurate soft sensors are emerging that address this concern. However, how their inaccuracy impacts the catchment-wide treatment performance of a system of many OSTs has not been quantified. We develop a stochastic model to estimate catchment-wide OST performances with a Monte Carlo simulation. In our study, soft sensors with a 70% accuracy improved the treatment performance from 66% of the time functional to 98%. Soft sensors optimized for specificity, indicating the true negative rate, improve the system performance, while sensors optimized for sensitivity, indicating the true positive rate, quantify the treatment performance more accurately. This new insight leads us to suggest programming two soft sensors in practical settings with the same hardware sensor data as input: one soft sensor geared to high specificity for maintenance scheduling and one geared to high sensitivity for performance quantification. Our findings suggest that a maintenance strategy combining inaccurate sensors with appropriate alarm management can vastly improve the mean catchment-wide treatment performance of a system of OSTs.


Subject(s)
Wastewater , Water Purification , Bioreactors , Computer Simulation , Monte Carlo Method
2.
Water Sci Technol ; 85(9): 2503-2524, 2022 May.
Article in English | MEDLINE | ID: mdl-35576250

ABSTRACT

Mathematical modelling is an indispensable tool to support water resource recovery facility (WRRF) operators and engineers with the ambition of creating a truly circular economy and assuring a sustainable future. Despite the successful application of mechanistic models in the water sector, they show some important limitations and do not fully profit from the increasing digitalisation of systems and processes. Recent advances in data-driven methods have provided options for harnessing the power of Industry 4.0, but they are often limited by the lack of interpretability and extrapolation capabilities. Hybrid modelling (HM) combines these two modelling paradigms and aims to leverage both the rapidly increasing volumes of data collected, as well as the continued pursuit of greater process understanding. Despite the potential of HM in a sector that is undergoing a significant digital and cultural transformation, the application of hybrid models remains vague. This article presents an overview of HM methodologies applied to WRRFs and aims to stimulate the wider adoption and development of HM. We also highlight challenges and research needs for HM design and architecture, good modelling practice, data assurance, and software compatibility. HM is a paradigm for WRRF modelling to transition towards a more resource-efficient, resilient, and sustainable future.


Subject(s)
Water Purification , Water Resources , Industry , Wastewater , Water
3.
Environ Sci Technol ; 54(17): 10840-10849, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32706580

ABSTRACT

On-site wastewater treatment plants (OSTs) are usually unattended, so failures often remain undetected and lead to prolonged periods of reduced performance. To stabilize the performance of unattended plants, soft sensors could expose faults and failures to the operator. In a previous study, we developed soft sensors and showed that soft sensors with data from unmaintained physical sensors can be as accurate as soft sensors with data from maintained ones. The monitored variables were pH and dissolved oxygen (DO), and soft sensors were used to predict nitrification performance. In the present study, we use synthetic data and monitor three plants to test these soft sensors. We find that a long solids retention time and a moderate aeration rate improve the pH soft-sensor accuracy and that the aeration regime is the main operational parameter affecting the accuracy of the DO soft sensor. We demonstrate that integrated design of monitoring and control is necessary to achieve robustness when extrapolating from one OST to another in the absence of plant-specific fine-tuning. Additionally, we provide a unique labeled dataset for further feature and data-driven soft-sensor development. Our benchmarking results indicate that it is feasible to monitor OSTs with unmaintained sensors and without plant-specific tuning of the developed soft sensors. This is expected to drastically reduce monitoring costs for OST-based sanitation systems.


Subject(s)
Benchmarking , Water Purification , Nitrification , Oxygen
4.
Water Res ; 161: 639-651, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31254889

ABSTRACT

Sensor maintenance is time-consuming and is a bottleneck for monitoring on-site wastewater treatment systems. Hence, we compare maintained and unmaintained sensors to monitor the biological performance of a small-scale sequencing batch reactor (SBR). The sensor types are ion-selective pH, optical dissolved oxygen (DO), and oxidation-reduction potential (ORP) with platinum electrode. We created soft sensors using engineered features: ammonium valley for pH, oxidation ramp for DO, and nitrite ramp for the ORP. Four soft sensors based on unmaintained pH sensors correctly identified the completion of the ammonium oxidation (89-91 out of 107 cycles), about as many times as soft sensors based on a maintained pH sensor (91 out of 107 cycles). In contrast, the DO soft sensor using data from a maintained sensor showed slightly better (89 out of 96 cycles) detection performance than that using data from two unmaintained sensors (77, respectively 82 out of 96 correct). Furthermore, the DO soft sensor using maintained data is much less sensitive to the optimisation of cut-off frequency and slope tolerance than the soft sensor using unmaintained data. The nitrite ramp provided no useful information on the state of nitrite oxidation, so no comparison of maintained and unmaintained ORP sensors was possible in this case. We identified two hurdles when designing soft sensors for unmaintained sensors: i) Sensors' type- and design-specific deterioration affects performance. ii) Feature engineering for soft sensors is sensor type specific, and the outcome is strongly influenced by operational parameters such as the aeration rate. In summary, the results with the provided soft sensors show that frequent sensor maintenance is not necessarily needed to monitor the performance of SBRs. Without sensor maintenance monitoring small-scale SBRs becomes practicable, which could improve the reliability of unstaffed on-site treatment systems substantially.


Subject(s)
Bioreactors , Oxygen , Hydrogen-Ion Concentration , Oxidation-Reduction , Reproducibility of Results , Waste Disposal, Fluid
5.
Environ Sci Technol ; 51(5): 2538-2553, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28125222

ABSTRACT

The promise of collecting and utilizing large amounts of data has never been greater in the history of urban water management (UWM). This paper reviews several data-driven approaches which play a key role in bringing forward a sea change. It critically investigates whether data-driven UWM offers a promising foundation for addressing current challenges and supporting fundamental changes in UWM. We discuss the examples of better rain-data management, urban pluvial flood-risk management and forecasting, drinking water and sewer network operation and management, integrated design and management, increasing water productivity, wastewater-based epidemiology and on-site water and wastewater treatment. The accumulated evidence from literature points toward a future UWM that offers significant potential benefits thanks to increased collection and utilization of data. The findings show that data-driven UWM allows us to develop and apply novel methods, to optimize the efficiency of the current network-based approach, and to extend functionality of today's systems. However, generic challenges related to data-driven approaches (e.g., data processing, data availability, data quality, data costs) and the specific challenges of data-driven UWM need to be addressed, namely data access and ownership, current engineering practices and the difficulty of assessing the cost benefits of data-driven UWM.


Subject(s)
Rain , Water , Floods , Wastewater , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...