Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(25): e2122477119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35700362

ABSTRACT

Alcohol intoxication at early ages is a risk factor for the development of addictive behavior. To uncover neuronal molecular correlates of acute ethanol intoxication, we used stable-isotope-labeled mice combined with quantitative mass spectrometry to screen more than 2,000 hippocampal proteins, of which 72 changed synaptic abundance up to twofold after ethanol exposure. Among those were mitochondrial proteins and proteins important for neuronal morphology, including MAP6 and ankyrin-G. Based on these candidate proteins, we found acute and lasting molecular, cellular, and behavioral changes following a single intoxication in alcohol-naïve mice. Immunofluorescence analysis revealed a shortening of axon initial segments. Longitudinal two-photon in vivo imaging showed increased synaptic dynamics and mitochondrial trafficking in axons. Knockdown of mitochondrial trafficking in dopaminergic neurons abolished conditioned alcohol preference in Drosophila flies. This study introduces mitochondrial trafficking as a process implicated in reward learning and highlights the potential of high-resolution proteomics to identify cellular mechanisms relevant for addictive behavior.


Subject(s)
Alcoholic Intoxication , Dopaminergic Neurons , Ethanol , Hippocampus , Nerve Tissue Proteins , Alcoholic Intoxication/metabolism , Alcoholic Intoxication/pathology , Animals , Behavior, Addictive/chemically induced , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dose-Response Relationship, Drug , Drosophila melanogaster , Ethanol/administration & dosage , Ethanol/toxicity , Gene Knockdown Techniques , Hippocampus/drug effects , Hippocampus/metabolism , Mice , Mitochondria/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Transport/drug effects
2.
Proc Natl Acad Sci U S A ; 116(26): 12720-12728, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31182581

ABSTRACT

The supply of nutrients is a fundamental regulator of ocean productivity and carbon sequestration. Nutrient sources, sinks, residence times, and elemental ratios vary over broad scales, including those resulting from climate-driven changes in upper water column stratification, advection, and the deposition of atmospheric dust. These changes can alter the proximate elemental control of ecosystem productivity with cascading ecological effects and impacts on carbon sequestration. Here, we report multidecadal observations revealing that the ecosystem in the eastern region of the North Pacific Subtropical Gyre (NPSG) oscillates on subdecadal scales between inorganic phosphorus (P i ) sufficiency and limitation, when P i concentration in surface waters decreases below 50-60 nmol⋅kg-1 In situ observations and model simulations suggest that sea-level pressure changes over the northwest Pacific may induce basin-scale variations in the atmospheric transport and deposition of Asian dust-associated iron (Fe), causing the eastern portion of the NPSG ecosystem to shift between states of Fe and P i limitation. Our results highlight the critical need to include both atmospheric and ocean circulation variability when modeling the response of open ocean pelagic ecosystems under future climate change scenarios.


Subject(s)
Ecosystem , Iron/chemistry , Phosphorus/chemistry , Aquatic Organisms/growth & development , Aquatic Organisms/metabolism , Carbon Cycle , Iron/metabolism , Iron Deficiencies , Microbiota , Pacific Ocean , Periodicity , Phosphorus/deficiency , Phosphorus/metabolism , Tropical Climate
3.
Phys Rev Lett ; 107(12): 128501, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-22026806

ABSTRACT

The El Niño-Southern Oscillation (ENSO) is the largest global climate signal on the interannual time scale. ENSO events occur irregularly, yet individual events follow a similar pattern of developing during boreal summer or fall and peaking during boreal winter. This characteristic of ENSO is often referred to as "phase locking" of ENSO with the annual cycle. However, no observational evidence of phase interaction between the two phenomena has thus far been presented. In this study, we analyze sea surface temperature observations and find the first evidence of partial phase synchronization of ENSO with the annual cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...