Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 24(40): 10238-10245, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29718544

ABSTRACT

This work reports high-level ab initio calculations and a detailed analysis on the nature of intermolecular interactions of heavy main-group element compounds and π systems. For this purpose we have chosen a set of benchmark molecules of the form MR3 , in which M=As, Sb, or Bi, and R=CH3 , OCH3 , or Cl. Several methods for the description of weak intermolecular interactions are benchmarked including DFT-D, DFT-SAPT, MP2, and high-level coupled cluster methods in the DLPNO-CCSD(T) approximation. Using local energy decomposition (LED) and an analysis of the electron density, details of the nature of this interaction are unraveled. The results yield insight into the nature of dispersion and donor-acceptor interactions in this type of system, including systematic trends in the periodic table, and also provide a benchmark for dispersion interactions in heavy main-group element compounds.

2.
J Chem Theory Comput ; 12(10): 4778-4792, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27564403

ABSTRACT

The local coupled cluster method DLPNO-CCSD(T) allows calculations on systems containing hundreds of atoms to be performed while typically reproducing canonical CCSD(T) energies with chemical accuracy. In this work, we present a scheme for decomposing the DLPNO-CCSD(T) interaction energy between two molecules into physical meaningful contributions, providing a quantification of the most important components of the chemical interaction. The method, called Local Energy Decomposition (LED), is straightforward and requires negligible additional computing time. Both the Hartree-Fock and the correlation energy are decomposed into contributions from localized or pairs of localized occupied orbitals. Assigning these localized orbitals to fragments allows one to differentiate between intra- and intermolecular contributions to the interaction energy. Accordingly, the interaction energy can be decomposed into electronic promotion, electrostatic, exchange, dynamic charge polarization, and dispersion contributions. The LED scheme is applied to a number of test cases ranging from weakly, dispersively bound complexes to systems with strong ionic interactions. The dependence of the results on the one-particle basis set and various technical aspects, such as the localization scheme, are carefully studied in order to ensure that the results do not suffer from technical artifacts. A numerical comparison between the DLPNO-CCSD(T)/LED and the popular symmetry adapted perturbation theory (DFT-SAPT) is made, and the limitations of the proposed scheme are discussed.

3.
Beilstein J Nanotechnol ; 5: 668-76, 2014.
Article in English | MEDLINE | ID: mdl-24991504

ABSTRACT

In order to simulate electrochemical reactions in the framework of quantum chemical methods, density functional theory, methods can be devised that explicitly include the electrochemical potential. In this work we discuss a Grand Canonical approach in the framework of density functional theory in which fractional numbers of electrons are used to represent an open system in contact with an electrode at a given electrochemical potential. The computational shortcomings and the additional effort in such calculations are discussed. An ansatz for a SCF procedure is presented, which can be applied routinely and only marginally increases the computational effort of standard constant electron number approaches. In combination with the common implicit solvent models this scheme can become a powerful tool, especially for the investigation of omnipresent non-faradaic effects in electrochemistry.

4.
Chemphyschem ; 14(13): 2984-9, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23843189

ABSTRACT

The interaction of platinum nanoparticles from a size of a few atoms up to 1 nm with extended carbon structures is studied by using quantum chemical methods. The aim is to obtain a deeper insight into the basic interactions between metal particles and carbon structures. For this purpose focus is placed on the type and strength of the interactions as well as the possibility to increase the adhesive forces by introducing chemical modifications (linker atoms) and defect sites or distortions of the support. The calculations show that there is a transition between an interaction with covalent character for smaller clusters and a dispersion-dominated interaction for larger particles. Furthermore, introduced linker atoms increase the covalent character of the interactions but also increase the distance between the cluster and the support, thereby leading to a lower interaction energy. This has implications for the design of chemical linkers or surface modifications to improve the durability of catalyst systems.

5.
Phys Chem Chem Phys ; 15(21): 8058-68, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23515463

ABSTRACT

The impact of electrolyte constituents on the interaction of hydrogen peroxide with polycrystalline platinum is decisive for the understanding of the selectivity of the oxygen reduction reaction (ORR). Hydrodynamic voltammetry measurements show that while the hydrogen peroxide reduction (PRR) is diffusion-limited in perchlorate- or fluoride-containing solutions, kinetic limitations are introduced by the addition of more strongly adsorbing anions. The strength of the inhibition of the PRR increases in the order ClO4(-)≈ F(-) < HSO4(-) < Cl(-) < Br(-) < I(-) as well as with the increase of the concentration of the strongly adsorbing anions. Electronic structure calculations indicate that the dissociation of H2O2 on Pt(111) is always possible, regardless of the coverage of spectator species. However, the adsorption of H2O2 becomes strongly endothermic at high coverage with adsorbing anions. A comparison of our observations on the inhibition of the PRR by spectators with previous studies on the selectivity of the ORR shows that oxygen is reduced to H2O2 only under conditions at which the PRR kinetics is significantly limited, while the ORR proceeds with a complete four-electron reduction only when the PRR is sufficiently fast. Therefore, only a H2O2-mediated pathway that includes a competition between the dissociation and the spectator coverage-dependent desorption of the H2O2 intermediate is enough to explain and unify all the observations that have been made so far on the selectivity of the ORR.


Subject(s)
Electrolytes/chemistry , Hydrogen Peroxide/chemistry , Oxygen/chemistry , Platinum/chemistry , Adsorption , Models, Molecular , Oxidation-Reduction , Sulfates/chemistry
6.
Phys Chem Chem Phys ; 15(8): 2712-24, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23329171

ABSTRACT

The proper description of electrified metal/solution interfaces, as they occur in electrochemical systems, is a key component for simulating the unique features of electrocatalytic reactions using electronic structure calculations. While in standard solid state (plane wave, periodic boundary conditions) density functional theory (DFT) calculations several models for describing electrochemical environments exist, for cluster models in a quantum chemistry approach (atomic orbital basis, finite system) this is not straightforward. In this work, two different approaches for the theoretical description of electrified interfaces of nanoparticles, the constant charge and the constant potential model, are discussed. Different schemes for describing electrochemical reactions including solvation models are tested for a consistent description of the electrochemical potential and the local chemical behavior for finite structures. The different schemes and models are investigated for the oxygen reduction reaction (ORR) on a hemispherical cuboctahedral platinum nanoparticle.

7.
Phys Chem Chem Phys ; 14(20): 7384-91, 2012 May 28.
Article in English | MEDLINE | ID: mdl-22517633

ABSTRACT

Understanding the hydrogen peroxide electrochemistry on platinum can provide information about the oxygen reduction reaction mechanism, whether H(2)O(2) participates as an intermediate or not. The H(2)O(2) oxidation and reduction reaction on polycrystalline platinum is a diffusion-limited reaction in 0.1 M HClO(4). The applied potential determines the Pt surface state, which is then decisive for the direction of the reaction: when H(2)O(2) interacts with reduced surface sites it decomposes producing adsorbed OH species; when it interacts with oxidized Pt sites then H(2)O(2) is oxidized to O(2) by reducing the surface. Electronic structure calculations indicate that the activation energies of both processes are low at room temperature. The H(2)O(2) reduction and oxidation reactions can therefore be utilized for monitoring the potential-dependent oxidation of the platinum surface. In particular, the potential at which the hydrogen peroxide reduction and oxidation reactions are equally likely to occur reflects the intrinsic affinity of the platinum surface for oxygenated species. This potential can be experimentally determined as the crossing-point of linear potential sweeps in the positive direction for different rotation rates, hereby defined as the "ORR-corrected mixed potential" (c-MP).

SELECTION OF CITATIONS
SEARCH DETAIL
...