Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 45(2): 206-24, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16367965

ABSTRACT

Ammonia assimilation by the plastidic glutamine synthetase/glutamate synthase system requires 2-oxoglutarate (2-OG) as a carbon precursor. Plastids depend on 2-OG import from the cytosol. A plastidic dicarboxylate translocator 1-[2-OG/malate translocator (DiT1)] has been identified and its substrate specificity and kinetic constants have been analyzed in vitro. However, the role of DiT1 in intact plants and its significance for ammonia assimilation remained uncertain. Here, to study the role of DiT1 in intact plants, its expression was antisense-repressed in transgenic tobacco plants. This resulted in a reduced transport capacity for 2-OG across the plastid envelope membrane. In consequence, allocation of carbon precursors to amino acid synthesis was impaired, organic acids accumulated and protein content, photosynthetic capacity and sugar pools in leaves were strongly decreased. The phenotype was consistent with a role of DIT1 in both, primary ammonia assimilation and the re-assimilation of ammonia resulting from the photorespiratory carbon cycle. Unexpectedly, the in situ rate of nitrate reduction was extremely low in alpha-DiT1 leaves, although nitrate reductase (NR) expression and activity remained high. We hypothesize that this discrepancy between extractable NR activity and in situ nitrate reduction is due to substrate limitation of NR. These findings and the severe phenotype of the antisense plants point to a crucial role of DiT1 at the interface between carbon and nitrogen metabolism.


Subject(s)
Carbon/metabolism , Malates/metabolism , Membrane Transport Proteins/physiology , Nitrogen/metabolism , Organic Anion Transporters/physiology , Plastids/metabolism , Nitrate Reductase/genetics , Nitrate Reductase/metabolism , Photosynthesis , Plants, Genetically Modified , RNA, Messenger/genetics , Spectrometry, Fluorescence , Nicotiana/enzymology , Nicotiana/metabolism , Nicotiana/physiology
2.
Plant Mol Biol ; 55(1): 17-32, 2004 May.
Article in English | MEDLINE | ID: mdl-15604662

ABSTRACT

When we think of extremophiles, organisms adapted to extreme environments, prokaryotes come to mind first. However, the unicellular red micro-alga Galdieria sulphuraria (Cyanidiales) is a eukaryote that can represent up to 90% of the biomass in extreme habitats such as hot sulfur springs with pH values of 0-4 and temperatures of up to 56 degrees C. This red alga thrives autotrophically as well as heterotrophically on more than 50 different carbon sources, including a number of rare sugars and sugar alcohols. This biochemical versatility suggests a large repertoire of metabolic enzymes, rivaled by few organisms and a potentially rich source of thermo-stable enzymes for biotechnology. The temperatures under which this organism carries out photosynthesis are at the high end of the range for this process, making G. sulphuraria a valuable model for physical studies on the photosynthetic apparatus. In addition, the gene sequences of this living fossil reveal much about the evolution of modern eukaryotes. Finally, the alga tolerates high concentrations of toxic metal ions such as cadmium, mercury, aluminum, and nickel, suggesting potential application in bioremediation. To begin to explore the unique biology of G. sulphuraria , 5270 expressed sequence tags from two different cDNA libraries have been sequenced and annotated. Particular emphasis has been placed on the reconstruction of metabolic pathways present in this organism. For example, we provide evidence for (i) a complete pathway for lipid A biosynthesis; (ii) export of triose-phosphates from rhodoplasts; (iii) and absence of eukaryotic hexokinases. Sequence data and additional information are available at http://genomics.msu.edu/galdieria.


Subject(s)
Carbon/metabolism , Expressed Sequence Tags , Lipid A/biosynthesis , Plastids/metabolism , Rhodophyta/genetics , Algal Proteins/genetics , Amino Acid Sequence , Base Sequence , Biological Transport , DNA, Complementary/chemistry , DNA, Complementary/genetics , Energy Metabolism/genetics , Fatty Acids/metabolism , Gene Library , Hexokinase/genetics , Hydrogen-Ion Concentration , Lipid Metabolism , Molecular Sequence Data , Monosaccharide Transport Proteins/genetics , Oxygen Consumption , Phosphate Transport Proteins/genetics , Photosynthesis/genetics , Phylogeny , Rhodophyta/metabolism , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Sequence Homology, Nucleic Acid , Temperature
3.
J Exp Bot ; 55(400): 1231-44, 2004 May.
Article in English | MEDLINE | ID: mdl-15047758

ABSTRACT

During the last 15 years, much progress has been made in discovering genes encoding solute transporters of the inner plastid envelope membrane. For example, genes encoding transporters for phosphorylated intermediates, dicarboxylates, adenine nucleotides, inorganic anions, and monosaccharides have been cloned. In many cases, the corresponding proteins have been expressed in recombinant host systems for further functional studies, thus allowing detailed in vitro characterization of transporter properties. Knowledge of the gene sequences encoding these transporters have allowed reverse-genetic approaches to study transporter function in vivo. Antisense repression and T-DNA insertion mutagenesis have provided a range of transgenic and mutant plants in which the activity of specific plastid envelope transporters are massively decreased or abolished. Plants with altered transporter activities represent excellent tools to probe the in vivo function of these transporters. Moreover, changing the permeability of the plastid envelope membrane permits the targeted manipulation of subcellular metabolite pools.


Subject(s)
Membrane Transport Proteins/physiology , Mutation , Plants/metabolism , Plastids/metabolism , Membrane Transport Proteins/metabolism , Models, Biological , Models, Chemical , Plants/genetics
4.
Plant Biotechnol J ; 1(2): 101-12, 2003 Mar.
Article in English | MEDLINE | ID: mdl-17147747

ABSTRACT

A recent strategy for pest control in plants has involved transformation with genes encoding cysteine proteinase inhibitors (cystatins). Little is known, however, about the effects of constitutive cystatin expression on whole plant physiology. The present study using oryzacystatin I (OC-I) expression in transformed tobacco was designed to resolve this issue and also to test the effects on abiotic stress tolerance. All transformed plants expressing OC-I showed a conditional phenotype. A marked effect on stem elongation was observed in plants grown under low light intensities. After 7 weeks of growth at low light, the plants expressing OC-I were smaller with fewer expanded leaves and a slightly lower total biomass than empty vector controls or wild type plants. Maximal rates of photosynthesis (A(max)) were also decreased, the inhibitory effect being greatest in the plants with highest OC-I expression. After 12 weeks of growth at low light, however, the plants expressing OC-I performed better in terms of shoot biomass production, which was nearly double that of the empty vector or wild type controls. All plants showed similar responses to drought, however photosynthesis was better protected against chilling injury in plants constitutively expressing OC-I. Photosynthetic CO(2) assimilation was decreased in all plants following exposure to 5 degrees C, but the inhibition was significantly less in the OC-I expressing plants than in controls. The transformed tobacco plants expressing OC-I therefore show a phenotype-environment interaction with important implications for biotechnological applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...