Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 67(18): e2300137, 2023 09.
Article in English | MEDLINE | ID: mdl-37465844

ABSTRACT

SCOPE: Maillard reaction products (MRPs) are believed to interact with the receptor for advanced glycation endproducts (RAGE) and lead to a pro-inflammatory cellular response. The structural basis for this interaction is scarcely understood. This study investigates the effect of individual lysine modifications in free form or bound to casein on human colon cancer cells. METHODS AND RESULTS: Selectively glycated casein containing either protein-bound N-ε-carboxymethyllysine (CML), N-ε-fructosyllysine (FL), or pyrraline is prepared and up to 94%, 97%, and 61% of lysine modification could be attributed to CML, FL, or pyrraline, respectively. HCT 116 cells are treated with free CML, pyrraline, FL, or modified casein for 24 h. Native casein is used as control. Intracellular MRP content is analyzed by UPLC-MS/MS. Microscopic analysis of the transcription factors shows no activation of NFκB by free or protein-bound FL or CML, whereas casein containing protein-bound pyrraline activates Nrf2. RAGE expression is not influenced by free or casein-bound MRPs. Activation of Nrf2 by pyrraline-modified casein is confirmed by analyzing Nrf2 target proteins NAD(P)H dehydrogenase (quinone 1) (NQO1) and heme oxygenase-1 (HO-1). CONCLUSION: Studies on the biological effects of glycated proteins require an individual consideration of defined structures. General statements on the effect of "AGEs" in biological systems are scientifically unsound.


Subject(s)
Lysine , Maillard Reaction , Humans , Lysine/metabolism , NF-E2-Related Factor 2 , Caseins/chemistry , Chromatography, Liquid , Receptor for Advanced Glycation End Products , HCT116 Cells , Tandem Mass Spectrometry , Glycation End Products, Advanced/chemistry
2.
Biofactors ; 49(3): 636-645, 2023.
Article in English | MEDLINE | ID: mdl-36757058

ABSTRACT

The impact of high glucose on the cellular redox state, causing both induction of antioxidative systems and also enhanced protein oxidation is discussed for a long time. It is established that elevated glucose levels are disrupting the cellular proteostasis and influencing the proteasomal system. However, it is still unresolved whether this is due to a reaction of the cellular proteasomal system towards the high glucose or whether this is a secondary reaction to inflammatory stimuli. Therefore, we used a dermal fibroblast cell line exposed to high glucose in order to reveal whether a response of the proteasomal system takes place. We investigated the α4 and the inducible iß5 subunits of the 20S proteasome, as well as the Rpn1-subunit of the 19S proteasomal regulator complex, measured activity of the 20S, 20S1, and 26S proteasome and detected as well changes in expression as a redistribution into the nucleus. Interestingly, while the activity of the proteasomal forms rather decreased under high glucose treatment; higher expression levels of components of the proteasomal system and higher concentrations of protein-bound 3-nitrotyrosine and Nrf2 (nuclear factor [erythroid-derived 2]-like 2) were detected. However, no change in the cytosol-nucleus distribution could be detected for most of the quantified parameters. We concluded that high glucose alone, without additional inflammatory stimuli, provokes a regulatory response on the ubiquitin-proteasomal system.


Subject(s)
Cell Nucleus , Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Cytoplasm/metabolism , Cell Nucleus/metabolism , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...