Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Plant Sci ; 10(2): e11470, 2022.
Article in English | MEDLINE | ID: mdl-35495189

ABSTRACT

Premise: Ferns differ from seed plants in possessing a life cycle that includes a small, free-living, seemingly vulnerable gametophyte stage in which sexual reproduction occurs. Most research on the response of fern gametophytes to environmental stress has been conducted on gametophytes grown in culture or harvested from natural habitats and subsequently manipulated and tested in laboratory experiments. We present a fixed-distance photographic methodology for monitoring longevity of gametophytes and their response to environmental stress in natural, undisturbed habitats over their life spans. Methods: We present methodology for non-invasive monitoring of growth and development in response to environmental factors, using programmed, fixed-distance photography, coupled with computer analyses allowing qualitative and quantitative comparisons. We tracked growth rates and stress responses of individual gametophyte plants to seasonal changes in a temperate climate. Results: Gametophytes and young sporophytes survived freezing and drought in temperate habitats, as we document through photographs and growth measurements. Gametophyte growth was suspended during the cold season and resumed the following spring. Individual gametophytes survived for up to nearly three years with retention of the ability to produce sporophytes. Discussion: Life histories of fern gametophytes in temperate habitats are more similar to those in tropical habitats than previous research has suggested. They survive and maintain reproductive capacity over several growing seasons, allowing extended opportunity for outbreeding. The application of photographic monitoring of additional species and habitats has great potential for a more complete understanding of the ecology of reproduction in homosporous vascular plants.

2.
Am J Bot ; 95(5): 542-8, 2008 May.
Article in English | MEDLINE | ID: mdl-21632380

ABSTRACT

Propagule banks are assumed to be able to store considerable genetic variability. Bryophyte populations are expected to rely more heavily on stored propagules than those of seed plants due to the vulnerability of the haploid gametophyte. This reliance has important implications for the genetic structure and evolutionary potential of surface populations. A liverwort, Mannia fragrans, was used to test whether the bryophyte diaspore bank functions as a "genetic memory." If a diaspore bank is capable of conserving genetic variability over generations, the levels of genetic diversity in the soil are expected to be similar or higher than at the surface. Surface and diaspore bank constituents of two populations of M. fragrans were investigated. Genetic structure and diversity measured as unbiased heterozygosity were analyzed using three ISSR markers. Similar genetic diversities were found in the soil (H(s) = 0.067) and at the surface (H(s)= 0.082). However, more haplotypes and specific haplotype lineages were present in soil samples. The results suggest that the bryophyte diaspore bank has an important role in accumulating genetic variability over generations and seasons. It is postulated that the role of the diaspore bank as a "genetic memory" is especially important in species of temporarily available habitats that have long-lived spores and genetically variable populations.

3.
BMC Evol Biol ; 7: 144, 2007 Aug 22.
Article in English | MEDLINE | ID: mdl-17714592

ABSTRACT

BACKGROUND: Revealing the past and present demographic history of populations is of high importance to evaluate the conservation status of species. Demographic data can be obtained by direct monitoring or by analysing data of historical and recent collections. Although these methods provide the most detailed information they are very time consuming. Another alternative way is to make use of the information accumulated in the species' DNA over its history. Recent development of the coalescent theory makes it possible to reconstruct the demographic history of species using nucleotide polymorphism data. To separate the effect of natural selection and demography, multilocus analysis is needed because these two forces can produce similar patterns of polymorphisms. In this study we investigated the amount and pattern of sequence variability of a Europe wide sample set of two peat moss species (Sphagnum fimbriatum and S. squarrosum) with similar distributions and mating systems but presumably contrasting historical demographies using 3 regions of the nuclear genome (appr. 3000 bps). We aimed to draw inferences concerning demographic, and phylogeographic histories of the species. RESULTS: All three nuclear regions supported the presence of an Atlantic and Non-Atlantic clade of S. fimbriatum suggesting glacial survival of the species along the Atlantic coast of Europe. Contrarily, S. squarrosum haplotypes showed three clades but no geographic structure at all. Maximum likelihood, mismatch and Bayesian analyses supported a severe historical bottleneck and a relatively recent demographic expansion of the Non-Atlantic clade of S. fimbriatum, whereas size of S. squarrosum populations has probably decreased in the past. Species wide molecular diversity of the two species was nearly the same with an excess of replacement mutations in S. fimbriatum. Similar levels of molecular diversity, contrasting phylogeographic patterns and excess of replacement mutations in S. fimbriatum compared to S. squarrosum mirror unexpected differences in the demography and population history of the species. CONCLUSION: This study represents the first detailed European wide phylodemographic investigation on bryophytes and shows how pattern of nucleotide polymorphism can reveal unexpected differences in the population history of haploid plants with seemingly similar characteristics.


Subject(s)
Biodiversity , Models, Genetic , Phylogeny , Sphagnopsida/genetics , DNA, Plant/genetics , Europe , Genetic Variation , Geography , Haplotypes , Polymorphism, Single Nucleotide , Sequence Alignment , Sequence Analysis, DNA , Species Specificity , Sphagnopsida/classification
4.
Ann Bot ; 100(1): 51-4, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17525100

ABSTRACT

BACKGROUND AND AIMS: Large clones of rhizomatous plants are found in many habitats, but little is known about whether such clones also occur on cliff faces where environmental conditions are extremely harsh and heterogeneous. METHODS: Using molecular (intersimple sequence repeat, ISSR) markers, the genotypic composition of a cliff-face population of Oxyria sinensis in Sichuan, China, was investigated. KEY RESULTS: The 98 O. sinensis ramets sampled belonged to 12 different genotypes (clones). The three most frequent clones were represented with 45, 22 and 12 ramets, respectively; the remaining nine were represented with only one to five ramets. The three largest clones spanned at least 2.7 m in the vertical direction and 4.6-6.9 m in the horizontal direction on the cliff face. CONCLUSIONS: On the cliff face, large clones of O. sinensis are formed by rhizomes growing along the crevices. Expansion by rhizomes may help O. sinensis to exploit the patchy resources and support establishment and growth of new ramets. Moreover, rooted ramets connected by rhizomes may effectively reduce the susceptibility of O. sinensis to rock fall and erosion and thus greatly improve the chances for long-term survival. The multi-clone structure indicates that sexual reproduction is also important for the long-term persistence of O. sinensis populations on cliffs.


Subject(s)
Geography , Polygonaceae/growth & development , Acclimatization , Genetic Markers , Genotype , Plant Stems/genetics , Plant Stems/growth & development , Polygonaceae/genetics , Polygonaceae/physiology , Reproduction/physiology
5.
New Phytol ; 172(4): 784-94, 2006.
Article in English | MEDLINE | ID: mdl-17096803

ABSTRACT

The chloroplast phylogeography of two peat mosses (Sphagnum fimbriatum and Sphagnum squarrosum) with similar distributions but different life history characteristics was investigated in Europe. Our main aim was to test whether similar distributions reflect similar phylogeographic and phylodemographic processes. Accessions covering the European distributions of the species were collected and approx. 2000 bp of the chloroplast genome of each species was sequenced. Maximum parsimony, statistical parsimony and phylodemographic analyses were used to address the question of whether these species with similar distributions show evidence of similar phylogeographic and phylodemographic processes. The chloroplast haplotypes of the currently spreading species S. fimbriatum showed strong geographic structure, whereas those of S. squarrosum, which has stable historical population sizes, showed only very weak geographic affinity and were widely distributed. We hypothesize that S. fimbriatum survived the last glaciations along the Atlantic coast of Europe, whereas S. squarrosum had numerous, scattered refugia in Europe. The dominance of one haplotype of S. fimbriatum across almost all of Europe suggests rapid colonization after the last glacial maximum. We hypothesize that high colonizing ability is an inherent characteristic of the species and its recent expansion in Europe is a response to climate change.


Subject(s)
Chloroplasts/genetics , Sphagnopsida/genetics , Biological Evolution , DNA, Chloroplast , Europe , Genetic Variation , Geography , Haplotypes , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...