Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Behav ; 145: 109320, 2023 08.
Article in English | MEDLINE | ID: mdl-37352815

ABSTRACT

Obsessive compulsive disorder (OCD) can occur comorbidly with epilepsy; both are complex, disruptive disorders that lower quality of life. Both OCD and epilepsy are disorders of hyperexcitable circuits, but it is unclear whether common circuit pathology may underlie the co-occurrence of these two neuropsychiatric disorders. Here, we induced early-life seizures (ELS) in rats to examine habit formation as a model for compulsive behaviors. Compulsive, repetitive behaviors in OCD utilize the same circuitry as habit formation. We hypothesized that rats with ELS could be more susceptible to habit formation than littermate controls, and that altered behavior would correspond to altered signaling in fronto-striatal circuits that underlie decision-making and action initiation. Here, we show instead that rats with ELS were significantly less likely to form habit behaviors compared with control rats. This behavioral difference corresponded with significant alterations to temporal coordination within and between brain regions that underpin the action to habit transition: 1) phase coherence between the lateral orbitofrontal cortex and dorsomedial striatum (DMS) and 2) theta-gamma coupling within DMS. Finally, we used cortical electrical stimulation as a model of transcranial magnetic stimulation (TMS) to show that temporal coordination of fronto-striatal circuits in control and ELS rats are differentially susceptible to potentiating and suppressive stimulation, suggesting that altered underlying circuit physiology may lead to altered response to therapeutic interventions such as TMS.


Subject(s)
Corpus Striatum , Quality of Life , Rats , Animals , Brain , Habits , Seizures , Magnetic Resonance Imaging
2.
Neurobiol Dis ; 178: 106021, 2023 03.
Article in English | MEDLINE | ID: mdl-36720444

ABSTRACT

There is increasing human and animal evidence that brain oscillations play a critical role in the development of spatial cognition. In rat pups, disruption of hippocampal rhythms via optogenetic stimulation during the critical period for memory development impairs spatial cognition. Early-life seizures are associated with long-term deficits in spatial cognition and aberrant hippocampal oscillatory activity. Here we asked whether modulation of hippocampal rhythms following early-life seizures can reverse or improve hippocampal connectivity and spatial cognition. We used optogenetic stimulation of the medial septum to induce physiological 7 Hz theta oscillations in the hippocampus during the critical period of spatial cognition following early-life seizures. Optogenetic stimulation of the medial septum in control and rats subjected to early-life seizures resulted in precisely regulated frequency-matched hippocampal oscillations. Rat pups receiving active blue light stimulation performed better than the rats receiving inert yellow light in a test of spatial cognition. The improvement in spatial cognition in these rats was associated with a faster theta frequency and higher theta power, coherence and phase locking value in the hippocampus than rats with early-life seizures receiving inert yellow light. These findings indicate that following early life seizures, modification of hippocampal rhythms may be a potential novel therapeutic modality.


Subject(s)
Hippocampus , Optogenetics , Humans , Rats , Animals , Optogenetics/methods , Hippocampus/physiology , Seizures/therapy , Light , Cognition , Theta Rhythm/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...