Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Int J Pediatr Otorhinolaryngol ; 182: 112012, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38861771

ABSTRACT

OBJECTIVE: Laryngomalacia is the most common pediatric laryngeal anomaly. The pathophysiology of laryngomalacia is not well defined; the leading hypothesis suggests weak laryngeal tone and neuromuscular discoordination. Only a few studies explored the histopathology of the laryngeal submucosal nerves, with reported nerve hypertrophy. Our study aims to describe the histopathology of submucosal nerves in specimens obtained from children with severe laryngomalacia compared to pediatric cadaveric controls. STUDY DESIGN: Prospective study. SETTINGS: Tertiary care children's hospital. METHODS: Histologic and immunohistochemical sections of supraglottic tissue from 26 children with severe laryngomalacia and six pediatric autopsies were digitally scanned and assessed with image analysis software (QuPath), resulting in the identification and measurement of 4561 peripheral nerves and over 100,000 foci of neurofilaments. RESULTS: Chronic inflammation was noted in all patients. Eosinophils were rare. The mean nerve area and perimeter were significantly smaller for patients with laryngomalacia compared to the control group (1594.0 ± 593.2 µm^2 vs. 2612.1 ± 2824.0 µm^2, p < 0.0001, and 158.8 ± 30.3 µm vs. 217.6 ± 165.0 µm, p < 0.0001). Nerve-per-area unit was significantly greater for patients with laryngomalacia compared to controls (1.39E-05 vs. 6.19 E-06, p = 0.009). The mean area and the number of neurofilaments per total nerve area were similar. Immunohistochemistry for calretinin, a marker for intestinal ganglion cells in Hirschsprung disease, was absent from all specimens. CONCLUSIONS: This series includes a comparison of all identifiable nerve fibers obtained from children with severe laryngomalacia and shows that the mucosal nerves are smaller on average than controls. These findings fail to provide support for significant morphologic peripheral nerve pathology in laryngomalacia.

2.
Neuropathology ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639066

ABSTRACT

In the evolving landscape of ependymoma classification, which integrates histological, molecular, and anatomical context, we detail a rare case divergent from the usual histopathological spectrum. We present the case of a 37-year-old man with symptomatic spinal cord compression at the L3-L4 level. Neuroradiological evaluation revealed an intradural, encapsulated mass. Histologically, the tumor displayed atypical features: bizarre pleomorphic giant cells, intranuclear inclusions, mitotic activity, and a profusion of eosinophilic cytoplasm with hyalinized vessels, deviating from the characteristic perivascular pseudorosettes or myxopapillary patterns. Immunohistochemical staining bolstered this divergence, marking the tumor cells positive for glial fibrillary acidic protein and epithelial membrane antigen with a characteristic ring-like pattern, and CD99 but negative for Olig-2. These markers, alongside methylation profiling, facilitated its classification as a myxopapillary ependymoma (MPE), despite the atypical histologic features. This profile underscores the necessity of a multifaceted diagnostic process, especially when histological presentation is uncommon, confirming the critical role of immunohistochemistry and molecular diagnostics in classifying morphologically ambiguous ependymomas and exemplifying the histological diversity within MPEs.

3.
Children (Basel) ; 11(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38671709

ABSTRACT

Diffuse midline gliomas are among the deadliest human cancers and have had little progress in treatment in the last 50 years. Cell cultures of these tumors have been developed recently, but the degree to which such cultures retain the characteristics of the source tumors is unknown. DNA methylation profiling offers a powerful tool to look at genome-wide epigenetic changes that are biologically meaningful and can help assess the similarity of cultured tumor cells to their in vivo progenitors. Paraffinized diagnostic tissue from three diffuse intrinsic pontine gliomas with H3 K27M mutations was compared with subsequent passages of neurosphere cell cultures from those tumors. Each cell line was passaged 3-4 times and analyzed with DNA methylation arrays and standard algorithms that provided a comparison of diagnostic classification and cluster analysis. All samples tested maintained high classifier scores and clustered within the reference group of H3 K27M-mutant diffuse midline gliomas. There was a gain of 1q in all cell lines, with two cell lines initially manifesting the gain of 1q only during culture. In vitro cell cultures of H3 K27M-mutant gliomas maintain high degrees of similarity in DNA methylation profiles to their source tumor, confirming their fidelity even with some chromosomal changes.

4.
Curr Oncol ; 31(1): 579-587, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38275834

ABSTRACT

Primary meningeal melanomatosis is an extremely rare tumor with very few documented responses to treatment. A 3-year-old male with a complex past medical history, including prematurity and shunted hydrocephalus, was diagnosed with primary meningeal melanomatosis with peritoneal implants. Molecular testing revealed an NRAS Q61R mutation. The patient received proton craniospinal radiation followed by immunotherapy with nivolumab (1 mg/kg) and ipilimumab (3 mg/kg) IV every 3 weeks and, upon progression, he was switched to a higher dose of nivolumab (3 mg/kg IV every 2 weeks) and binimetinib (24 mg/m2/dose, twice a day). The patient had significant improvement of CNS disease with radiation therapy and initial immunotherapy but progression of extracranial metastatic peritoneal and abdominal disease. Radiation was not administered to the whole abdomen. After two cycles of nivolumab and treatment with the MEK inhibitor binimetinib, he had radiographic and clinical improvement in abdominal metastasis and ascitis. He ultimately died from RSV infection, Klebsiella sepsis, and subdural hemorrhage without evidence of tumor progression. This is the first report of a child with primary meningeal melanomatosis with extracranial metastatic disease with response to a combination of radiation, immunotherapy and MEK inhibitor therapy.


Subject(s)
Melanoma , Meningeal Neoplasms , Male , Child , Humans , Child, Preschool , Nivolumab , Meningeal Neoplasms/therapy , Meningeal Neoplasms/diagnosis , Meningeal Neoplasms/genetics , Melanoma/therapy , Ipilimumab , Mitogen-Activated Protein Kinase Kinases
5.
Neuro Oncol ; 26(2): 348-361, 2024 02 02.
Article in English | MEDLINE | ID: mdl-37715730

ABSTRACT

BACKGROUND: Recurrent brain tumors are the leading cause of cancer death in children. Indoleamine 2,3-dioxygenase (IDO) is a targetable metabolic checkpoint that, in preclinical models, inhibits anti-tumor immunity following chemotherapy. METHODS: We conducted a phase I trial (NCT02502708) of the oral IDO-pathway inhibitor indoximod in children with recurrent brain tumors or newly diagnosed diffuse intrinsic pontine glioma (DIPG). Separate dose-finding arms were performed for indoximod in combination with oral temozolomide (200 mg/m2/day x 5 days in 28-day cycles), or with palliative conformal radiation. Blood samples were collected at baseline and monthly for single-cell RNA-sequencing with paired single-cell T cell receptor sequencing. RESULTS: Eighty-one patients were treated with indoximod-based combination therapy. Median follow-up was 52 months (range 39-77 months). Maximum tolerated dose was not reached, and the pediatric dose of indoximod was determined as 19.2 mg/kg/dose, twice daily. Median overall survival was 13.3 months (n = 68, range 0.2-62.7) for all patients with recurrent disease and 14.4 months (n = 13, range 4.7-29.7) for DIPG. The subset of n = 26 patients who showed evidence of objective response (even a partial or mixed response) had over 3-fold longer median OS (25.2 months, range 5.4-61.9, p = 0.006) compared to n = 37 nonresponders (7.3 months, range 0.2-62.7). Four patients remain free of active disease longer than 36 months. Single-cell sequencing confirmed emergence of new circulating CD8 T cell clonotypes with late effector phenotype. CONCLUSIONS: Indoximod was well tolerated and could be safely combined with chemotherapy and radiation. Encouraging preliminary evidence of efficacy supports advancing to Phase II/III trials for pediatric brain tumors.


Subject(s)
Brain Neoplasms , Brain Stem Neoplasms , Humans , Child , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Temozolomide , Tryptophan , Immunologic Factors , Immunotherapy , Brain Stem Neoplasms/pathology
6.
Cell Rep Med ; 4(6): 101091, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37343516

ABSTRACT

GD2-targeting immunotherapies have improved survival in children with neuroblastoma, yet on-target, off-tumor toxicities can occur and a subset of patients cease to respond. The majority of neuroblastoma patients who receive immunotherapy have been previously treated with cytotoxic chemotherapy, making it paramount to identify neuroblastoma-specific antigens that remain stable throughout standard treatment. Cell surface glycoproteomics performed on human-derived neuroblastoma tumors in mice following chemotherapy treatment identified protein tyrosine kinase 7 (PTK7) to be abundantly expressed. Furthermore, PTK7 shows minimal expression on pediatric-specific normal tissues. We developed an anti-PTK7 chimeric antigen receptor (CAR) and find PTK7 CAR T cells specifically target and kill PTK7-expressing neuroblastoma in vitro. In vivo, human/murine binding PTK7 CAR T cells regress aggressive neuroblastoma metastatic mouse models and prolong survival with no toxicity. Together, these data demonstrate preclinical efficacy and tolerability for targeting PTK7 and support ongoing investigations to optimize PTK7-targeting CAR T cells for neuroblastoma.


Subject(s)
Neuroblastoma , Receptors, Chimeric Antigen , Humans , Child , Animals , Mice , Neuroblastoma/therapy , Neuroblastoma/pathology , Immunotherapy , Receptors, Chimeric Antigen/genetics , Protein-Tyrosine Kinases
7.
Mol Oncol ; 17(9): 1784-1802, 2023 09.
Article in English | MEDLINE | ID: mdl-37341142

ABSTRACT

Children with Group 3 medulloblastoma (G3 MB) have a very poor prognosis, and many do not survive beyond 5 years after diagnosis. A factor that may contribute to this is the lack of available targeted therapy. Expression of protein lin-28 homolog B (LIN28B), a regulator of developmental timing, is upregulated in several cancers, including G3 MB, and is associated with worse survival in this disease. Here, we investigate the role of the LIN28B pathway in G3 MB and demonstrate that the LIN28B-lethal-7 (let-7; a microRNA that is a tumor suppressor)-lymphokine-activated killer T-cell-originated protein kinase (PBK; also known as PDZ-binding kinase) axis promotes G3 MB proliferation. LIN28B knockdown in G3-MB-patient-derived cell lines leads to a significant reduction in cell viability and proliferation in vitro and in prolonged survival of mice with orthotopic tumors. The LIN28 inhibitor N-methyl-N-[3-(3-methyl-1,2,4-triazolo[4,3-b]pyridazin-6-yl)phenyl]acetamide (1632) significantly reduces G3 MB cell growth and demonstrates efficacy in reducing tumor growth in mouse xenograft models. Inhibiting PBK using HI-TOPK-032 also results in a significant reduction in G3 MB cell viability and proliferation. Together, these results highlight a critical role for the LIN28B-let-7-PBK pathway in G3 MB and provide preliminary preclinical results for drugs targeting this pathway.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , MicroRNAs , Humans , Mice , Animals , Medulloblastoma/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Cell Proliferation/genetics , MicroRNAs/genetics , Cerebellar Neoplasms/genetics , Cell Line, Tumor , RNA-Binding Proteins/genetics
8.
Front Oncol ; 13: 1123378, 2023.
Article in English | MEDLINE | ID: mdl-36910660

ABSTRACT

Introduction: Infant type hemispheric gliomas are a rare tumor with unique molecular characteristics. In many cases these harbor mutations in receptor tyrosine kinase pathways and respond to targeted therapy. Here we describe the case of an infant with this type of tumor with a novel ATIC-ALK fusion that has responded dramatically to the ALK inhibitor lorlatinib, despite being refractory to standard chemotherapy. Case description: The infant was initially treated with standard chemotherapy and found to have an ATIC-ALK fusion. When surveillance imaging revealed progressive disease, the patient was switched to the ALK-inhibitor lorlatinib at 47 mg/m2/day. The patient demonstrated a significant clinical and radiographic response to the ALK inhibitor lorlatinib after just 3 months of treatment and a near complete response by 6 months of therapy. Conclusion: The ALK inhibitor lorlatinib is an effective targeted therapy in infant type hemispheric glioma patients harboring ATIC-ALK fusion.

9.
Acta Neuropathol Commun ; 11(1): 8, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635771

ABSTRACT

We show that Polycomb Repressive Complex-2 (PRC2) components EED and EZH2 maintain neural identity in cerebellar granule neuron progenitors (CGNPs) and SHH-driven medulloblastoma, a cancer of CGNPs. Proliferating CGNPs and medulloblastoma cells inherit neural fate commitment through epigenetic mechanisms. The PRC2 is an epigenetic regulator that has been proposed as a therapeutic target in medulloblastoma. To define PRC2 function in cerebellar development and medulloblastoma, we conditionally deleted PRC2 components Eed or Ezh2 in CGNPs and analyzed medulloblastomas induced in Eed-deleted and Ezh2-deleted CGNPs by expressing SmoM2, an oncogenic allele of Smo. Eed deletion destabilized the PRC2, depleting EED and EZH2 proteins, while Ezh2 deletion did not deplete EED. Eed-deleted cerebella were hypoplastic, with reduced proliferation, increased apoptosis, and inappropriate muscle-like differentiation. Ezh2-deleted cerebella showed similar, milder phenotypes, with fewer muscle-like cells and without reduced growth. Eed-deleted and Ezh2-deleted medulloblastomas both demonstrated myoid differentiation and progressed more rapidly than PRC2-intact controls. The PRC2 thus maintains neural commitment in CGNPs and medulloblastoma, but is not required for SHH medulloblastoma progression. Our data define a role for the PRC2 in preventing inappropriate, non-neural fates during postnatal neurogenesis, and caution that targeting the PRC2 in SHH medulloblastoma may not produce durable therapeutic effects.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Medulloblastoma/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Cell Proliferation , Cerebellum/metabolism , Cell Differentiation , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism
10.
BMC Neurol ; 22(1): 257, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35820885

ABSTRACT

BACKGROUND: Leber Hereditary Optic Neuropathy (LHON) is a rare, maternally-inherited mitochondrial disease that primarily affects retinal ganglion cells (RGCs) and their axons in the optic nerve, leading to irreversible, bilateral severe vision loss. Lenadogene nolparvovec gene therapy was developed as a treatment for patients with vision loss from LHON caused by the most prevalent m.11778G > A mitochondrial DNA point mutation in the MT-ND4 gene. Lenadogene nolparvovec is a replication-defective recombinant adeno-associated virus vector 2 serotype 2 (AAV2/2), encoding the human wild-type MT-ND4 protein. Lenadogene nolparvovec was administered by intravitreal injection (IVT) in LHON patients harboring the m.11778G > A ND4 mutation in a clinical development program including one phase 1/2 study (REVEAL), three phase 3 pivotal studies (REVERSE, RESCUE, REFLECT), and one long-term follow-up study (RESTORE, the follow-up of REVERSE and RESCUE patients). CASE PRESENTATION: A 67-year-old woman with MT-ND4 LHON, included in the REVERSE clinical study, received a unilateral IVT of lenadogene nolparvovec in the right eye and a sham injection in the left eye in May 2016, 11.4 months and 8.8 months after vision loss in her right and left eyes, respectively. The patient had a normal brain magnetic resonance imaging with contrast at the time of diagnosis of LHON. Two years after treatment administration, BCVA had improved in both eyes. The product was well tolerated with mild and resolutive anterior chamber inflammation in the treated eye. In May 2019, the patient was diagnosed with a right temporal lobe glioblastoma, IDH-wildtype, World Health Organization grade 4, based on histological analysis of a tumor excision. The brain tumor was assessed for the presence of vector DNA by using a sensitive validated qPCR assay targeting the ND4 sequence of the vector. CONCLUSION: ND4 DNA was not detected (below 15.625 copies/µg of genomic DNA) in DNA extracted from the brain tumor, while a housekeeping gene DNA was detected at high levels. Taken together, this data shows the absence of detection of lenadogene nolparvovec in a brain tumor (glioblastoma) of a treated patient in the REVERSE clinical trial 3 years after gene therapy administration, supporting the long-term favorable safety of lenadogene nolparvovec.


Subject(s)
Brain Neoplasms , Glioblastoma , Optic Atrophy, Hereditary, Leber , Aged , Biopsy , Clinical Trials, Phase III as Topic , Dependovirus , Female , Follow-Up Studies , Humans , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy
11.
Neurooncol Adv ; 4(1): vdac049, 2022.
Article in English | MEDLINE | ID: mdl-35669012

ABSTRACT

Background: Pediatric gliomas comprise a diverse set of brain tumor entities that have substantial long-term ramifications for patient survival and quality of life. However, the study of these tumors is currently limited due to a lack of authentic models. Additionally, many aspects of pediatric brain tumor biology, such as tumor cell invasiveness, have been difficult to study with currently available tools. To address these issues, we developed a synthetic extracellular matrix (sECM)-based culture system to grow and study primary pediatric brain tumor cells. Methods: We developed a brain-like sECM material as a supportive scaffold for the culture of primary, patient-derived pediatric glioma cells and established patient-derived cell lines. Primary juvenile brainstem-derived murine astrocytes were used as a feeder layer to support the growth of primary human tumor cells. Results: We found that our culture system facilitated the proliferation of various primary pediatric brain tumors, including low-grade gliomas, and enabled ex vivo testing of investigational therapeutics. Additionally, we found that tuning this sECM material allowed us to assess high-grade pediatric glioma cell invasion and evaluate therapeutic interventions targeting invasive behavior. Conclusion: Our sECM culture platform provides a multipurpose tool for pediatric brain tumor researchers that enables both a wide breadth of biological assays and the cultivation of diverse tumor types.

12.
Cell Rep Med ; 3(5): 100620, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35584630

ABSTRACT

Metastatic disease in the brain is difficult to control and predicts poor prognosis. Here, we analyze human brain metastases and demonstrate their robust infiltration by CD8+ T cell subsets with distinct antigen specificities, phenotypic states, and spatial localization within the tumor microenvironment. Brain metastases are densely infiltrated by T cells; the majority of infiltrating CD8+ T cells express PD-1. Single-cell RNA sequencing shows significant clonal overlap between proliferating and exhausted CD8+ T cells, but these subsets have minimal clonal overlap with circulating and other tumor-infiltrating CD8+ T cells, including bystander CD8+ T cells specific for microbial antigens. Using spatial transcriptomics and spatial T cell receptor (TCR) sequencing, we show these clonally unrelated, phenotypically distinct CD8+ T cell populations occupy discrete niches within the brain metastasis tumor microenvironment. Together, our work identifies signaling pathways within CD8+ T cells and in their surrounding environment that may be targeted for immunotherapy of brain metastases.


Subject(s)
Brain Neoplasms , CD8-Positive T-Lymphocytes , Brain Neoplasms/metabolism , Humans , Receptors, Antigen, T-Cell/genetics , T-Lymphocyte Subsets , Tumor Microenvironment
13.
Mol Oncol ; 16(4): 1009-1025, 2022 02.
Article in English | MEDLINE | ID: mdl-34482626

ABSTRACT

Sonic hedgehog (Shh)-driven medulloblastoma (Shh MB) cells are dependent on constitutive Shh signaling, but targeted treatment of Shh MB has been ineffective due to drug resistance. The purpose of this study was to address the critical role of signal transducer and activator of transcription 3 (STAT3) in Shh signaling and drug resistance in Shh MB cells. Herein, we show that STAT3 is required for Smoothened (Smo)-dependent Shh signaling and, in turn, is reciprocally regulated by Shh signaling, and demonstrate that STAT3 activity is critical for expression of HCK proto-oncogene, Src family tyrosine kinase (Hck) in Shh MB. We also demonstrate that maintained STAT3 activity suppresses p21 expression and promotes colony formation of Shh MB cells, whereas dual treatment with inhibitors of both Smo and STAT3 results in marked synergistic killing and overcomes drug resistance in vitro of Smo antagonist-resistant Shh MB cells. Finally, STAT3 inhibitor treatment significantly prevents in vivo tumor formation in genetically engineered Shh MB mice. Collectively, we show that STAT3 is necessary to maintain Shh signaling and thus is a potential therapeutic target to treat Shh MB and overcome anti-Smo drug resistance.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Animals , Carcinogenesis/genetics , Cerebellar Neoplasms/pathology , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/metabolism , Mice , STAT3 Transcription Factor/metabolism , Smoothened Receptor/genetics , Smoothened Receptor/metabolism
14.
Am J Med Sci ; 361(4): 534-541, 2021 04.
Article in English | MEDLINE | ID: mdl-33342552

ABSTRACT

In this patient-focused review, we present a 34-year-old previously healthy man admitted for fever and headache two weeks after a motor vehicle accident. On admission, his workup was concerning for meningoencephalitis based on elevated cerebrospinal fluid (CSF) white blood cell count and elevated CSF protein. He was admitted for management of meningoencephalitis. During his course, no causative infectious agent was identified despite an extensive workup. He additionally underwent an autoimmune and paraneoplastic workup that was negative. During his hospitalization, he developed acute transverse myelitis manifested by bilateral lower extremity paralysis. After four weeks marked by persistent clinical deterioration, brain biopsy was performed. Pathologic examination was consistent with neuromyelitis optica spectrum disorder (NMOSD). In this case report and literature review, we explore the presentations of NMOSD that mimic an infection. Clinicians should be aware of the possibility of NMOSD masquerading as infectious meningoencephalitis or acute transverse myelitis.


Subject(s)
Meningoencephalitis/diagnosis , Neuromyelitis Optica/diagnosis , Adult , Diagnosis, Differential , Humans , Male , Meningoencephalitis/microbiology , Meningoencephalitis/virology , Myelitis, Transverse/diagnosis , Myelitis, Transverse/diagnostic imaging , Myelitis, Transverse/etiology , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/etiology
15.
Brain ; 144(1): 53-69, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33300045

ABSTRACT

Paediatric high-grade gliomas (HGGs) account for the most brain tumour-related deaths in children and have a median survival of 12-15 months. One promising avenue of research is the development of novel therapies targeting the properties of non-neoplastic cell-types within the tumour such as tumour associated macrophages (TAMs). TAMs are immunosuppressive and promote tumour malignancy in adult HGG; however, in paediatric medulloblastoma, TAMs exhibit anti-tumour properties. Much is known about TAMs in adult HGG, yet little is known about them in the paediatric setting. This raises the question of whether paediatric HGGs possess a distinct constituency of TAMs because of their unique genetic landscapes. Using human paediatric HGG tissue samples and murine models of paediatric HGG, we demonstrate diffuse midline gliomas possess a greater inflammatory gene expression profile compared to hemispheric paediatric HGGs. We also show despite possessing sparse T-cell infiltration, human paediatric HGGs possess high infiltration of IBA1+ TAMs. CD31, PDGFRß, and PDGFB all strongly correlate with IBA1+ TAM infiltration. To investigate the TAM population, we used the RCAS/tv-a system to recapitulate paediatric HGG in newborn immunocompetent mice. Tumours are induced in Nestin-positive brain cells by PDGFA or PDGFB overexpression with Cdkn2a or Tp53 co-mutations. Tumours driven by PDGFB have a significantly lower median survival compared to PDGFA-driven tumours and have increased TAM infiltration. NanoString and quantitative PCR analysis indicates PDGFB-driven tumours have a highly inflammatory microenvironment characterized by high chemokine expression. In vitro bone marrow-derived monocyte and microglial cultures demonstrate bone marrow-derived monocytes are most responsible for the production of inflammatory signals in the tumour microenvironment in response to PDGFB stimulation. Lastly, using knockout mice deficient for individual chemokines, we demonstrate the feasibility of reducing TAM infiltration and prolonging survival in both PDGFA and PDGFB-driven tumours. We identify CCL3 as a potential key chemokine in these processes in both humans and mice. Together, these studies provide evidence for the potent inflammatory effects PDGFB has in paediatric HGGs.


Subject(s)
Brain Neoplasms/immunology , Encephalitis/immunology , Proto-Oncogene Proteins c-sis/immunology , Tumor-Associated Macrophages/immunology , Adolescent , Adult , Animals , Brain Neoplasms/genetics , Cells, Cultured , Chemokines/genetics , Child , Child, Preschool , Encephalitis/genetics , Female , Glioma , Humans , Infant , Infant, Newborn , Male , Mice, Inbred C57BL , Transcriptome , Young Adult
17.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32788236

ABSTRACT

Brain tumors are the leading cause of cancer-related mortality in children and have distinct genomic and molecular features compared with adult glioma. However, the properties of immune cells in these tumors has been vastly understudied compared with their adult counterparts. We combined multiplex immunofluorescence immunohistochemistry coupled with machine learning and single-cell mass cytometry to evaluate T-cells infiltrating pediatric glial tumors. We show that low-grade tumors are characterized by greater T-cell density compared with high-grade glioma (HGG). However, even among low-grade tumors, T-cell infiltration can be highly variable and subtype-dependent, with greater T-cell density in pleomorphic xanthoastrocytoma and ganglioglioma. CD3+ T-cell infiltration correlates inversely with the expression of SOX2, an embryonal stem cell marker commonly expressed by glial tumors. T-cells within both HGG and low-grade glioma (LGG) exhibit phenotypic heterogeneity and tissue-resident memory T-cells consist of distinct subsets of CD103+ and TCF1+ cells that exhibit distinct spatial localization patterns. TCF1+ T-cells are located closer to the vessels while CD103+ resident T-cells reside within the tumor further away from the vasculature. Recurrent tumors are characterized by a decline in CD103+ tumor-infiltrating T-cells. BRAFV600E mutation is immunogenic in children with LGG and may serve as a target for immune therapy. These data provide several novel insights into the subtype-dependent and grade-dependent changes in immune architecture in pediatric gliomas and suggest that harnessing tumor-resident T-cells may be essential to improve immune control in glioma.


Subject(s)
Brain Neoplasms/immunology , Glioma/immunology , T-Lymphocytes/metabolism , Brain Neoplasms/pathology , Glioma/pathology , Humans , Male , Neoplasm Grading , Tumor Microenvironment
18.
Int J Radiat Oncol Biol Phys ; 108(1): 157-163, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32057994

ABSTRACT

PURPOSE: Melanoma brain metastases (MBM) occur in ∼50% of melanoma patients. Although both radiation therapy (RT) and immune checkpoint inhibitor (ICI) are used alone or in combination for MBM treatment, the role of this combination and how these treatments could best be sequenced remains unclear. METHODS AND MATERIALS: We conducted a retrospective analysis of patients with resected MBM who underwent treatment with RT, ICI, or a combination of RT and ICI. Among the latter, we specifically investigated the differential gene expression via RNA-sequencing between patients who received RT first then ICI (RT → ICI) versus ICI first then RT (ICI → RT). We used a glycoprotein-transduced syngeneic melanoma mouse model for validation experiments. RESULTS: We found that for patients with resected MBM, a combination of RT and ICI confers superior survival compared with RT alone. Specifically, we found that RT → ICI was superior compared with ICI → RT. Transcriptome analysis of resected MBM revealed that the RT → ICI cohort demonstrated deregulation of genes involved in apoptotic signaling and key modulators of inflammation that are most implicated in nuclear factor kappa-light-chain-enhancer of activated B cells signaling. In a preclinical model, we showed that RT followed by anti-programmed death-ligand 1 therapy was superior to the reverse sequence of therapy, supporting the observations we made in patients with MBM. CONCLUSIONS: Our study provides initial insights into the optimal sequence of RT and ICI in the treatment of MBM after surgical resection. Prospective studies examining the best sequence of RT and ICI are necessary, and our study contributes to the rationale to pursue these.


Subject(s)
Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Immune Checkpoint Inhibitors/pharmacology , Melanoma/pathology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/secondary , Cell Line, Tumor , Combined Modality Therapy , Humans , Mice , Retrospective Studies , Time Factors , Transcriptome/drug effects , Transcriptome/radiation effects
19.
Brain Pathol ; 30(1): 46-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31104347

ABSTRACT

High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication (HGNET BCOR ex15 ITD) is a recently proposed tumor entity of the central nervous system (CNS) with a distinct methylation profile and characteristic genetic alteration. The complete spectrum of histologic features, accompanying genetic alterations, clinical outcomes, and optimal treatment for this new tumor entity are largely unknown. Here, we performed a comprehensive assessment of 10 new cases of HGNET BCOR ex15 ITD. The tumors mostly occurred in young children and were located in the cerebral or cerebellar hemispheres. On imaging all tumors were large, well-circumscribed, heterogeneous masses with variable enhancement and reduced diffusion. They were histologically characterized by predominantly solid growth, glioma-like fibrillarity, perivascular pseudorosettes, and palisading necrosis, but absence of microvascular proliferation. They demonstrated sparse to absent GFAP expression, no synaptophysin expression, variable OLIG2 and NeuN positivity, and diffuse strong BCOR nuclear positivity. While BCOR exon 15 internal tandem duplication was the solitary pathogenic alteration identified in six cases, four cases contained additional alterations including CDKN2A/B homozygous deletion, TERT amplification or promoter hotspot mutation, and damaging mutations in TP53, BCORL1, EP300, SMARCA2 and STAG2. While the limited clinical follow-up in prior reports had indicated a uniformly dismal prognosis for this tumor entity, this cohort includes multiple long-term survivors. Our study further supports inclusion of HGNET BCOR ex15 ITD as a distinct CNS tumor entity and expands the known clinicopathologic, radiographic, and genetic features.


Subject(s)
Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Adolescent , Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Central Nervous System Neoplasms/genetics , Child , Child, Preschool , Cyclin-Dependent Kinase Inhibitor p16/genetics , E1A-Associated p300 Protein/genetics , Exons , Female , Genomics , Glioma/genetics , Humans , Infant , Kaplan-Meier Estimate , Male , Oligodendrocyte Transcription Factor 2/genetics , Proto-Oncogene Proteins/metabolism , Repressor Proteins/metabolism , Telomerase/genetics , Transcription Factors/genetics
20.
J Neurooncol ; 143(3): 381-392, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31073965

ABSTRACT

PURPOSE: Gliosarcoma is a histologic variant of glioblastoma (GBM), and like GBM carries a poor prognosis. Median survival is less than one (1) year with less than 5% of patients alive after 5 years. Although there is no cure, standard treatment includes surgery, radiation and chemotherapy. While very similar to GBM, gliosarcoma exhibits several distinct differences, morphologically and molecularly. Therefore, we report a comprehensive analysis of DNA copy number changes in gliosarcoma using a cytogenomic DNA copy number (CN) microarray (OncoScan®). METHODS: Cytogenomic DNA copy number microarray (OncoScan®) was performed on 18 cases of gliosarcoma. MetaCore™ enrichment was applied to the array results to detect associated molecular pathways. RESULTS: The most frequent alteration was copy number loss, comprising 57% of total copy number changes. The number of losses far exceeded the number of amplifications (***, < 0.001) and loss of heterozygosity events (***, < 0.001). Amplifications were infrequent (4.6%), particularly for EGFR. Chromosomes 9 and 10 had the highest number of losses; a large portion of which correlated to CDKN2A/B loss. Copy number gains were the second most common alteration (26.2%), with the majority occurring on chromosome 7. MetaCore™ enrichment detected notable pathways for copy number gains including: HOXA, Rho family of GTPases, and EGFR; copy number loss including: WNT, NF-kß, and CDKN2A; and copy number loss of heterozygosity including: WNT and p53. CONCLUSIONS: The pathways and copy number alterations detected in this study may represent key drivers in gliosarcoma oncogenesis and may provide a starting point toward targeted oncologic analysis with therapeutic potential.


Subject(s)
Biomarkers, Tumor/genetics , DNA Copy Number Variations , Genomics/methods , Gliosarcoma/genetics , Neoplasm Recurrence, Local/genetics , Polymorphism, Single Nucleotide , Signal Transduction , Adult , Aged , Female , Follow-Up Studies , Gliosarcoma/pathology , Gliosarcoma/surgery , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/surgery , Oligonucleotide Array Sequence Analysis , Prognosis , Retrospective Studies , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...