Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 126(Pt 19): 4490-501, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23886943

ABSTRACT

The Ca(2+)-sensing receptor (CaSR) is the master regulator of whole-body extracellular free ionized [Ca(2+)]o. In addition to sensing [Ca(2+)]o, CaSR integrates inputs from a variety of different physiological stimuli. The CaSR is also expressed in many regions outside the [Ca(2+)]o homeostatic system, including the fetal lung where it plays a crucial role in lung development. Here, we show that neuroepithelial bodies (NEBs) of the postnatal mouse lung express a functional CaSR. NEBs are densely innervated groups of neuroendocrine epithelial cells in the lung representing complex sensory receptors in the airways and exhibiting stem cell characteristics. qRT-PCR performed on laser microdissected samples from GAD67-GFP mouse lung cryosections revealed exclusive expression of the CaSR in the NEB microenvironment. CaSR immunoreactivity was present at NEB cells from postnatal day 14 onwards. Confocal imaging of lung slices revealed that NEB cells responded to an increase of [Ca(2+)]o with a rise in intracellular Ca(2+) ([Ca(2+)]i); an effect mimicked by several membrane-impermeant CaSR agonists (e.g. the calcimimetic R-568) and that was blocked by the calcilytic Calhex-231. Block of TRPC channels attenuated the CaSR-dependent increases in [Ca(2+)]i, suggesting that Ca(2+) influx through TRPC channels contributes to the total [Ca(2+)]i signal evoked by the CaSR in NEBs. CaSR also regulated baseline [Ca(2+)]i in NEBs and, through paracrine signaling from Clara-like cells, coordinated intercellular communication in the NEB microenvironment. These data suggest that the NEB CaSR integrates multiple signals converging on this complex chemosensory unit, and is a key regulator of this intrapulmonary airway stem cell niche.


Subject(s)
Lung/metabolism , Neuroendocrine Cells/cytology , Neuroepithelial Bodies/metabolism , Receptors, Calcium-Sensing/biosynthesis , Animals , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuroendocrine Cells/metabolism , Receptors, Calcium-Sensing/metabolism
2.
Histochem Cell Biol ; 140(5): 549-66, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23568330

ABSTRACT

Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates, but has also been reported in multiple cell types outside the CNS. A GABAergic system has been proposed in neuroepithelial bodies (NEBs) in monkey lungs. Pulmonary NEBs are known as complex intraepithelial sensory airway receptors and are part of the NEB microenvironment. Aim of the present study was to unravel a GABAergic signaling system in the NEB microenvironment in mouse lungs, enabling the use of genetically modified animals for future functional studies. Immunostaining of mouse lungs revealed that glutamic acid decarboxylase 65/67 (GAD65/67), a rate-limiting enzyme in the biosynthesis of GABA, and the vesicular GABA transporter (VGAT) were exclusively expressed in NEB cells. In GAD67-green fluorescent protein (GFP) knock-in mice, all pulmonary NEBs appeared to express GFP. For confocal live cell imaging, ex vivo vibratome lung slices of GAD67-GFP mice can be directly loaded with fluorescent functional probes, e.g. a red-fluorescent calcium dye, without the necessity of time-consuming prior live visualization of NEBs. RT-PCR of the NEB microenvironment obtained by laser microdissection revealed the presence of both GABAA and GABAB (R1 and R2) receptors, which was confirmed by immunostaining. In conclusion, the present study not only revealed the presence of a GABAergic signaling pathway, but also the very selective expression of GFP in pulmonary NEBs in a GAD67-GFP mouse model. Different proof of concept experiments have clearly shown that adoption of the GAD67-GFP mouse model will certainly boost future functional imaging and gene expression analysis of the mouse NEB microenvironment.


Subject(s)
Cellular Microenvironment , GABAergic Neurons/metabolism , Glutamate Decarboxylase/metabolism , Green Fluorescent Proteins/metabolism , Lung/metabolism , Neuroepithelial Bodies/metabolism , Signal Transduction , Animals , Glutamate Decarboxylase/genetics , Green Fluorescent Proteins/genetics , Immunohistochemistry , Lung/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Imaging , Neuroepithelial Bodies/cytology , Reverse Transcriptase Polymerase Chain Reaction , gamma-Aminobutyric Acid/metabolism
3.
Adv Exp Med Biol ; 758: 157-66, 2012.
Article in English | MEDLINE | ID: mdl-23080157

ABSTRACT

We recently developed an ex vivo lung slice model that allows for confocal live cell imaging (LCI) of neuroepithelial bodies (NEBs) in postnatal mouse lungs (postnatal days 1-21 and adult). NEBs are morphologically well-characterized, extensively innervated groups of neuroendocrine cells in the airway epithelium, which are shielded from the airway lumen by 'Clara-like' cells. The prominent presence of differentiated NEBs from early embryonic development onwards, strongly suggests that NEBs may exert important functions during late fetal and neonatal life. The main goal of the present study was to adapt the current postnatal LCI lung slice model to enable functional studies of fetal mouse lungs (gestational days 17-20).In vibratome lung slices of prenatal mice, NEBs could be unequivocally identified with the fluorescent stryryl pyridinium dye 4-Di-2-ASP. Changes in the intracellular free calcium concentration and in mitochondrial membrane potential could be monitored using appropriate functional fluorescent indicators (e.g. Fluo-4).It is clear that the described fetal mouse lung slice model is suited for LCI studies of Clara cells, ciliated cells, and the NEB microenvironment, and offers excellent possibilities to further unravel the significance of NEBs during the prenatal and perinatal period.


Subject(s)
Cellular Microenvironment , Fetus/cytology , Lung/cytology , Neuroepithelial Bodies/cytology , Animals , Calcium/metabolism , Female , Mice , Mice, Inbred C57BL , Pregnancy
4.
PLoS One ; 7(8): e43357, 2012.
Article in English | MEDLINE | ID: mdl-22916248

ABSTRACT

BACKGROUND: Dendritic cells (DCs), professional antigen-presenting cells with the unique ability to initiate primary T-cell responses, are present in atherosclerotic lesions where they are exposed to oxidative stress that generates cytotoxic reactive oxygen species (ROS). A large body of evidence indicates that cell death is a major modulating factor of atherogenesis. We examined antioxidant defence systems of human monocyte-derived (mo)DCs and monocytes in response to oxidative stress. METHODS: Oxidative stress was induced by addition of tertiary-butylhydroperoxide (tert-BHP, 30 min). Cellular responses were evaluated using flow cytometry and confocal live cell imaging (both using 5-(and-6)-chloromethyl-2,7-dichlorodihydrofluorescein diacetate, CM-H(2)DCFDA). Viability was assessed by the neutral red assay. Total RNA was extracted for a PCR profiler array. Five genes were selected for confirmation by Taqman gene expression assays, and by immunoblotting or immunohistochemistry for protein levels. RESULTS: Tert-BHP increased CM-H(2)DCFDA fluorescence and caused cell death. Interestingly, all processes occurred more slowly in moDCs than in monocytes. The mRNA profiler array showed more than 2-fold differential expression of 32 oxidative stress-related genes in unstimulated moDCs, including peroxiredoxin-2 (PRDX2), an enzyme reducing hydrogen peroxide and lipid peroxides. PRDX2 upregulation was confirmed by Taqman assays, immunoblotting and immunohistochemistry. Silencing PRDX2 in moDCs by means of siRNA significantly increased CM-DCF fluorescence and cell death upon tert-BHP-stimulation. CONCLUSIONS: Our results indicate that moDCs exhibit higher intracellular antioxidant capacities, making them better equipped to resist oxidative stress than monocytes. Upregulation of PRDX2 is involved in the neutralization of ROS in moDCs. Taken together, this points to better survival skills of DCs in oxidative stress environments, such as atherosclerotic plaques.


Subject(s)
Dendritic Cells/metabolism , Monocytes/cytology , Oxidative Stress/physiology , Cells, Cultured , Flow Cytometry , Humans , Immunoblotting , Immunohistochemistry , Oxidative Stress/genetics , Reactive Oxygen Species/metabolism
5.
Am J Respir Cell Mol Biol ; 47(3): 315-23, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22461428

ABSTRACT

In rodent lungs, a major part of the myelinated vagal airway afferents selectively contacts pulmonary neuroepithelial bodies (NEBs). Because most myelinated vagal airway afferents concern physiologically characterized mechanoreceptors, the present study aimed at unraveling the potential involvement of NEB cells in transducing mechanosensory information from the airways to the central nervous system. Physiological studies were performed using confocal Ca(2+) imaging of airway epithelium in murine lung slices. Mechanical stimulation by short-term application of a mild hypoosmotic solution (230 mosmol) resulted in a selective, fast, reversible, and reproducible Ca(2+) rise in NEB cells. Other airway epithelial cells could only be activated using more severe hypoosmotic stimuli (< 200 mosmol). NEB cells selectively expressed the Ca(2+)-permeable osmo- and mechanosensitive transient receptor potential canonical channel 5 (TRPC5) in their apical membranes, whereas immunoreactivity for TRP vanilloid-4 and TRP melastatin-3 was abundant in virtually all other airway epithelial cells. Hypoosmotic activation of NEB cells was prevented by GsMTx-4, an inhibitor of mechanosensitive ion channels, and by SKF96365, an inhibitor of TRPC channels. Short application of gadolinium, reported to activate TRPC5 channels, evoked a transient Ca(2+) rise in NEB cells. Osmomechanical activation of NEB cells gave rise to a typical delayed activation of Clara-like cells due to the release of ATP from NEB cells. Because ATP may activate the NEB-associated P2X(2/3) ATP receptor expressing myelinated vagal afferents, the current observations strongly suggest that pulmonary NEB cells are fully equipped to initiate mechanosensory signal transduction to the central nervous system via a purinergic signaling pathway.


Subject(s)
Bronchi/cytology , Mechanotransduction, Cellular , Neuroepithelial Bodies , Animals , Bronchi/metabolism , Calcium/metabolism , Immunohistochemistry , Ion Channels/metabolism , Mice , Mice, Inbred C57BL , Osmosis
6.
Histochem Cell Biol ; 136(4): 371-85, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21822716

ABSTRACT

Afferent activities arising from sensory nerve terminals located in lungs and airways are carried almost exclusively by fibres travelling through the vagus nerve. Based on electrophysiological investigations, intrapulmonary airway-related vagal afferent receptors have been classified into three main subtypes, two of which are myelinated and mechanosensitive, i.e., rapidly and slowly adapting receptors. To allow for a full functional identification of the distinct populations of airway receptors, morphological and neurochemical characteristics still need to be determined. Nerve terminals visualised using markers for myelinated vagal afferents seem to be almost uniquely associated with two morphologically well-formed airway receptor end organs, smooth muscle-associated airway receptors (SMARs) and neuroepithelial bodies (NEBs), localised in airway smooth muscle and epithelium, respectively. Due to the lack of a selective marker for SMARs in mice, no further neurochemical coding is available today. NEBs are extensively innervated diffusely spread groups of neuroendocrine cells in the airway epithelium, and are known to receive at least two separate populations of myelinated vagal afferent nerve terminals. So far, however, no evidence has been reported for the expression of channels that may underlie direct sensing and transduction of mechanical stimuli by the receptor terminals in NEBs and SMARs. This study focused on the expression of mechanogated two-pore domain K(+) (K(2P)) channels, TREK-1 and TRAAK, in mouse airways and more particular in the NEB micro-environment and in SMARs by multiple immunostaining. TREK-1 could be detected on smooth muscle cells surrounding intrapulmonary airways and blood vessels, while TRAAK was expressed on myelinated vagal afferents terminating both in SMARs and in the NEB micro-environment. Co-stainings with known markers for subpopulations of myelinated vagal afferents and general neuronal markers revealed that all identified SMARs exhibit TRAAK immunoreactivity, and that at least three subpopulations exist in mouse airways. Also, the intraepithelial terminals of both subpopulations of NEB-associated myelinated vagal sensory nerve fibres were shown to express TRAAK. In conclusion, the present study finally characterised an intrinsically mechanosensitive ion channel, the K(2P) channel TRAAK, on the terminals of identified myelinated vagal nodose airway afferents, organised as SMARs and as components of the innervation of NEBs. These data support the hypothesis that both SMARs and NEBs harbour the morphological counterparts of electrophysiologically identified myelinated vagal airway mechanoreceptors. TRAAK appears to be strongly involved in regulating airway mechanosensing since it was found to be expressed on the terminals of all subpopulations of potential vagal mechanosensors.


Subject(s)
Lung/metabolism , Muscle, Smooth/metabolism , Neuroepithelial Bodies/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels/metabolism , Sensory Receptor Cells/metabolism , Animals , Female , Immunohistochemistry , Lung/cytology , Male , Mice , Mice, Inbred C57BL , Staining and Labeling
7.
PLoS Negl Trop Dis ; 5(5): e1021, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21572980

ABSTRACT

BACKGROUND: Most of the Leishmania genome is reported to be constitutively expressed during the life cycle of the parasite, with a few regulated genes. Inter-species comparative transcriptomics evidenced a low number of species-specific differences related to differentially distributed genes or the differential regulation of conserved genes. It is of uppermost importance to ensure that the observed differences are indeed species-specific and not simply specific of the strains selected for representing the species. The relevance of this concern is illustrated by current study. METHODOLOGY/PRINCIPAL FINDINGS: We selected 5 clinical isolates of L. braziliensis characterized by their diversity of clinical and in vitro phenotypes. Real-time quantitative PCR was performed on promastigote and amastigote life stages to assess gene expression profiles at seven time points covering the whole life cycle. We tested 12 genes encoding proteins with roles in transport, thiol-based redox metabolism, cellular reduction, RNA poly(A)-tail metabolism, cytoskeleton function and ribosomal function. The general trend of expression profiles showed that regulation of gene expression essentially occurs around the stationary phase of promastigotes. However, the genes involved in this phenomenon appeared to vary significantly among the isolates considered. CONCLUSION/SIGNIFICANCE: Our results clearly illustrate the unique character of each isolate in terms of gene expression dynamics. Results obtained on an individual strain are not necessarily representative of a given species. Therefore, extreme care should be taken when comparing the profiles of different species and extrapolating functional differences between them.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation , Leishmania braziliensis/growth & development , Leishmania braziliensis/genetics , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Molecular Sequence Data , Protozoan Proteins/biosynthesis , Protozoan Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...