Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Foods ; 12(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37372605

ABSTRACT

The potential of paraprobiotics and postbiotics to be used as beneficial agents for human health has caused an effort by the scientific community to gather information about the bioactivity of these compounds and production methods. Understanding the evolution of scientific research in this area of study is important to understand the future perspectives and the main bottlenecks of scientific and technological development involving these compounds. In this scenario, this review work used a bibliometric analysis tool intending to improve the scientific documentation, bringing information and communicating the results to the scientific community through the quantitative analysis of the current literature, available in one of the main databases, the Web of Science, also providing recent information on the evolution and future perspectives in the field of paraprobiotic and postbiotic development. The results of this study showed that the main studies discuss the bioactivity of these compounds. Concerning the development of functional foods, there is a need for extensive research on production methods and the interaction of these compounds with food. However, it concluded that much still needs to be studied to prove the claims of bioactivity, especially when used for the development of functional foods.

2.
Foods ; 12(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37107487

ABSTRACT

The harmful effects on the environment caused by the indiscriminate use of synthetic plastics and the inadequate management of post-consumer waste have given rise to efforts to redirect this consumption to bio-based economic models. In this sense, using biopolymers to produce materials is a reality for food packaging companies searching for technologies that allow these materials to compete with those from synthetic sources. This review paper focused on the recent trends in multilayer films with the perspective of using biopolymers and natural additives for application in food packaging. Firstly, the recent developments in the area were presented concisely. Then, the main biopolymers used (gelatin, chitosan, zein, polylactic acid) and main methods for multilayer film preparation were discussed, including the layer-by-layer, casting, compression, extrusion, and electrospinning methods. Furthermore, we highlighted the bioactive compounds and how they are inserted in the multilayer systems to form active biopolymeric food packaging. Furthermore, the advantages and drawbacks of multilayer packaging development are also discussed. Finally, the main trends and challenges in using multilayer systems are presented. Therefore, this review aims to bring updated information in an innovative approach to current research on food packaging materials, focusing on sustainable resources such as biopolymers and natural additives. In addition, it proposes viable production routes for improving the market competitiveness of biopolymer materials against synthetic materials.

3.
Environ Sci Pollut Res Int ; 30(23): 64067-64077, 2023 May.
Article in English | MEDLINE | ID: mdl-37060415

ABSTRACT

In this study, a sustainable and easily prepared hydrochar from wood waste was studied to adsorb and recover the rare earth element cerium (Ce(III)) from an aqueous solution. The results revealed that the hydrochar contains several surface functional groups (e.g., C-O, C = O, OH, COOH), which largely influenced its adsorption capacity. The effect of pH strongly influenced the Ce(III) removal, achieving its maximum removal efficiency at pH 6.0 and very low adsorption capacity under an acidic solution. The hydrochar proved to be highly efficient in Ce(III) adsorption reaching a maximum adsorption capacity of 327.9 mg g-1 at 298 K. The kinetic and equilibrium process were better fitted by the general order and Liu isotherm model, respectively. Possible mechanisms of Ce(III) adsorption on the hydrochar structure could be explained by electrostatic interactions and chelation between surface functional groups and the Ce(III). Furthermore, the hydrochar exhibited an excellent regeneration capacity upon using 1 mol L-1 of sulfuric acid (H2SO4) as eluent, and it was reused for three cycles without losing its adsorption performance. This research proposes a sustainable approach for developing an efficient adsorbent with excellent physicochemical and adsorption properties for Ce(III) removal.


Subject(s)
Metals, Rare Earth , Water Pollutants, Chemical , Wood/chemistry , Water Pollutants, Chemical/analysis , Hydrogen-Ion Concentration , Adsorption , Water , Kinetics
4.
Environ Sci Pollut Res Int ; 30(23): 63661-63677, 2023 May.
Article in English | MEDLINE | ID: mdl-37055691

ABSTRACT

Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and can be used to produce activated carbons. Therefore, the physical route was investigated for producing activated carbons to reuse citrus wastes. In this work, eight activated carbons were developed, varying the precursor (orange peel-OP, mandarine peel-MP, rangpur lime peel-RLP, and sweet lime peel-SLP) and the activating agent (CO2 and H2O) to remove Cu(II) ions of the aqueous medium. Results revealed promising activated carbons with a micro-mesoporous structure, a specific surface area of around 400 m2 g-1, and a pore volume of around 0.25 cm3 g-1. In addition, Cu (II) adsorption was favored at pH 5.5. The kinetic study showed that the equilibrium was reached within 60 min removing about 80% of Cu(II) ions. The Sips model was the most suitable for the equilibrium data, providing maximum adsorption capacities (qmS) values of 69.69, 70.27, 88.04, 67.83 mg g-1 for activated carbons (AC-CO2) from OP, MP, RLP, and SLP, respectively. The thermodynamic behavior showed that the adsorption process of Cu(II) ions was spontaneous, favorable, and endothermic. It was suggested that the mechanism was controlled by surface complexation and Cu2+-π interaction. Desorption was possible with an HCl solution (0.5 mol L-1). From the results obtained in this work, it is possible to infer that citrus residues could be successfully converted into efficient adsorbents to remove Cu(II) ions from aqueous solutions.


Subject(s)
Citrus , Water Pollutants, Chemical , Humans , Charcoal/chemistry , Carbon Dioxide , Adsorption , Oxides , Water , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
5.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838808

ABSTRACT

Water pollution by dyes has been a major environmental problem to be tackled, and magnetic adsorbents appear as promising alternatives to solve it. Herein, magnetic activated carbons were prepared by the single-step method from Sapelli wood sawdust, properly characterized, and applied as adsorbents for brilliant blue dye removal. In particular, two magnetic activated carbons, MAC1105 and MAC111, were prepared using the proportion of biomass KOH of 1:1 and varying the proportion of NiCl2 of 0.5 and 1. The characterization results demonstrated that the different proportions of NiCl2 mainly influenced the textural characteristics of the adsorbents. An increase in the surface area from 260.0 to 331.5 m2 g-1 and in the total pore volume from 0.075 to 0.095 cm3 g-1 was observed with the weight ratio of NiCl2. Both adsorbents exhibit ferromagnetic properties and the presence of nanostructured Ni particles. The different properties of the materials influenced the adsorption kinetics and equilibrium of brilliant blue dye. MAC111 showed faster kinetics, reaching the equilibrium in around 10 min, while for MAC1105, it took 60 min for the equilibrium to be reached. In addition, based on the Sips isotherm, the maximum adsorption capacity was 98.12 mg g-1 for MAC111, while for MAC1105, it was 60.73 mg g-1. Furthermore, MAC111 presented the potential to be reused in more adsorption cycles than MAC1105, and the use of the adsorbents in the treatment of a simulated effluent exhibited high effectiveness, with removal efficiencies of up to 90%.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Coloring Agents , Magnetic Phenomena , Kinetics , Methylene Blue , Hydrogen-Ion Concentration
6.
Environ Sci Pollut Res Int ; 30(18): 51920-51931, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36820982

ABSTRACT

Herein, the methylene blue (MB) biosorption from the agroindustrial residue (cassava bagasse) is reported. The cassava bagasse residue presented an irregular surface, anionic character, and low specific surface area. The experiments were performed in batch mode. The biosorption behavior was investigated through the experimental variables, initial concentration of MB, pH, and temperature. The maximum biosorption capacity (170.13 mg g-1) reached 328 K and pH 10.0. The equilibrium and kinetics were better fitted by the Sips and general order (R2 ≥ 0.997 and R2adj ≥ 0.996) models, respectively. Furthermore, the thermodynamic study revealed a spontaneous (ΔG0 < 0) and endothermic process. Finally, the results showed cassava bagasse is a potential material for biosorption dyes from the aqueous medium. In addition, the biosorbent has a low aggregate cost and high availability, which contributes to the destination of large amounts of waste and inspires engineering applications.


Subject(s)
Environmental Pollutants , Manihot , Water Pollutants, Chemical , Methylene Blue/chemistry , Water , Water Pollutants, Chemical/analysis , Adsorption , Hydrogen-Ion Concentration , Thermodynamics , Kinetics
7.
Environ Sci Pollut Res Int ; 30(18): 52485-52497, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36840876

ABSTRACT

The consumption of açaí fruit (Euterpe oleracea) has largely increased worldwide, resulting in a significant increase in the demand for its pulp. As a result, the small producing communities end up with large amounts of açaí endocarp residues, creating local environmental pollution problems. Therefore, chemical and physical routes were investigated for producing açaí endocarp adsorbents to propose a locally viable solution for this problem. The adsorption properties of the produced biochars were tested for clonazepam (CZM) removal, and the toxicity of the final solutions was evaluated. The results revealed that the chemical route generated biochar with about twice the surface area and pore volume (762 m2 g-1 and 0.098 cm3 g-1) than the physical route (498 m2 g-1 and 0.048 cm3 g-1). Furthermore, the Sips isotherm better described the CZM adsorption equilibrium for both biochars, with qs values of 26.94 and 61.86 mg g-1 for the physical- and chemical-activated adsorbents. Moreover, recycling studies were performed, and the chemical-activated biochar was stable for up to three cycles, reaching removal rates superior to 80%. Besides, the final toxicity decreased after the adsorptive treatment. Therefore, chemical activation can be used as a simple and effective method for producing stable and compelling adsorbents as an elegant way of adding value to the residues from açaí production, helping solve local environmental problems.


Subject(s)
Euterpe , Euterpe/chemistry , Clonazepam , Adsorption , Charcoal/chemistry
8.
Environ Sci Pollut Res Int ; 30(6): 15789-15796, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36173520

ABSTRACT

An activated carbon (AC) deriving from sludge is used in this research for the adsorption of two water pollutants, namely Reactive Black 5 (RB5) and Green Alizarin (GA) dyes, at different temperatures. The adsorption capacities varied from 277.2 to 312.69 mg/g for GA and from 225.82 to 256.02 mg/g for RB5. Comparatively, this adsorbent presents good performances in removing these dyes from wastewater. The application of physical models to adsorption experiments is advantageous to provide new insights into the dyes' adsorption mechanism. A dedicated physical adsorption model suggests that RB5 and GA dyes are adsorbed in a monolayer. Moreover, the orientation of RB5 and GA dyes on AC resulted in an angled position, determining a multi-molecular process. In addition, both dyes are adsorbed by the occurrence of an aggregation process, forming a dimer. The impact of temperature can be also interpreted, allowing concluding that it plays a relevant role in removing these dyes. The calculation and interpretation of adsorption energies show that the dyes are removed via an endothermic process, and physical forces are involved.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Sewage , Charcoal , Adsorption , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
9.
Environ Sci Pollut Res Int ; 29(59): 88488-88506, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36334205

ABSTRACT

Adsorption is a promising technology for removing several contaminants from aqueous matrices. In the last years, researchers worldwide have been working on developing composite adsorbents to overcome some limitations and drawbacks of conventional adsorbent materials, which depend on various factors, including the characteristics of the adsorbents. Therefore, it is essential to characterize the composite adsorbents to describe their properties and structure and elucidate the mechanisms, behavior, and phenomenons during the adsorption process. In this sense, this work aimed to review the main methods used for composite adsorbent characterization, providing valuable information on the importance of these techniques in developing new adsorbents. In this paper, we reviewed the following methods: X-Ray diffraction (XRD); spectroscopy; scanning electron microscopy (SEM); N2 adsorption/desorption isotherms (BET and BJH methods); thermogravimetry (TGA); point of zero charge (pHPZC); elemental analysis; proximate analysis; swelling and water retention capacities; desorption and reuse.


Subject(s)
Technology , Adsorption , Microscopy, Electron, Scanning , Thermogravimetry
10.
Polymers (Basel) ; 14(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36432981

ABSTRACT

Herein, tetracycline adsorption employing magnetic chitosan (CS·Fe3O4) as the adsorbent is reported. The magnetic adsorbent was synthesized by the co-precipitation method and characterized through FTIR, XRD, SEM, and VSM analyses. The experimental data showed that the highest maximum adsorption capacity was reached at pH 7.0 (211.21 mg g-1). The efficiency of the magnetic adsorbent in tetracycline removal was dependent on the pH, initial concentration of adsorbate, and the adsorbent dosage. Additionally, the ionic strength showed a significant effect on the process. The equilibrium and kinetics studies demonstrate that Sips and Elovich models showed the best adjustment for experimental data, suggesting that the adsorption occurs in a heterogeneous surface and predominantly by chemical mechanisms. The experimental results suggest that tetracycline adsorption is mainly governed by the hydrogen bonds and cation-π interactions due to its pH dependence as well as the enhancement in the removal efficiency with the magnetite incorporation on the chitosan surface, respectively. Thermodynamic parameters indicate a spontaneous and exothermic process. Finally, magnetic chitosan proves to be efficient in TC removal even after several adsorption/desorption cycles.

11.
Molecules ; 27(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36431881

ABSTRACT

Brazil's production and consumption of açai pulp (Euterpe oleracea) occur on a large scale. Most of the fruit is formed by the pit, which generates countless tons of residual biomass. A new purpose for this biomass, making its consumption highly sustainable, was presented in this study, where activated carbon (AC) was produced with zinc chloride for later use as an adsorbent. AC carbon formed by carbon and with a yield of 28 % was satisfactorily used as an adsorbent in removing the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Removal efficiency was due to the highly porous surface (Vp = 0.467 cm3 g-1; Dp = 1.126 nm) and good surface área (SBET = 920.56 m2 g-1). The equilibrium data fit the Sips heterogeneous and homogeneous surface model better. It was observed that the increase in temperature favored adsorption, reaching a maximum experimental capacity of 218 mg g-1 at 328 K. The thermodynamic behavior indicated a spontaneous, favorable, and endothermic behavior. The magnitude of the enthalpy of adsorption was in agreement with the physical adsorption. Regardless of the herbicide concentration, the adsorbent displayed fast kinetics, reaching equilibrium within 120 min. The linear driving force (LDF) model provided a strong statistical match to the kinetic curves. AC with zinc chloride (ZnCl2), created from leftover açai biomass, is a potential alternative as an adsorbent for treating effluents containing 2,4-D.


Subject(s)
Euterpe , Herbicides , Porosity , Fruit , Charcoal , Phenoxyacetates , Seeds , 2,4-Dichlorophenoxyacetic Acid
12.
Molecules ; 27(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36364342

ABSTRACT

This work valorizes butiá pomace (Butia capitata) using pyrolysis to prepare CO2 adsorbents. Different fractions of the pomace, like fibers, endocarps, almonds, and deoiled almonds, were characterized and later pyrolyzed at 700 °C. Gas, bio-oil, and biochar fractions were collected and characterized. The results revealed that biochar, bio-oil, and gas yields depended on the type of pomace fraction (fibers, endocarps, almonds, and deoiled almonds). The higher biochar yield was obtained by endocarps (31.9%wt.). Furthermore, the gas fraction generated at 700 °C presented an H2 content higher than 80%vol regardless of the butiá fraction used as raw material. The biochars presented specific surface areas reaching 220.4 m2 g-1. Additionally, the endocarp-derived biochar presented a CO2 adsorption capacity of 66.43 mg g-1 at 25 °C and 1 bar, showing that this material could be an effective adsorbent to capture this greenhouse gas. Moreover, this capacity was maintained for 5 cycles. Biochars produced from butiá precursors without activation resulted in a higher surface area and better performance than some activated carbons reported in the literature. The results highlighted that pyrolysis could provide a green solution for butiá agro-industrial wastes, generating H2 and an adsorbent for CO2.


Subject(s)
Carbon Dioxide , Pyrolysis , Charcoal , Adsorption
13.
Molecules ; 27(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234798

ABSTRACT

The extensive use of pesticides in agriculture has significantly impacted the environment and human health, as these pollutants are inadequately disposed of into water bodies. In addition, pesticides can cause adverse effects on humans and aquatic animals due to their incomplete removal from the aqueous medium by conventional wastewater treatments. Therefore, processes such as heterogeneous photocatalysis and adsorption by nanocomposites have received special attention in the scientific community due to their unique properties and ability to degrade and remove several organic pollutants, including pesticides. This report reviews the use of nanocomposites in pesticide adsorption and photocatalytic degradation from aqueous solutions. A bibliographic search was performed using the ScienceDirect, American Chemical Society (ACS), and Royal Society of Chemistry (RSC) indexes, using Boolean logic and the following descriptors: "pesticide degradation" AND "photocatalysis" AND "nanocomposites"; "nanocomposites" AND "pesticides" AND "adsorption". The search was limited to research article documents in the last ten years (from January 2012 to June 2022). The results made it possible to verify that the most dangerous pesticides are not the most commonly degraded/removed from wastewater. At the same time, the potential of the supported nanocatalysts and nanoadsorbents in the decontamination of wastewater-containing pesticides is confirmed once they present reduced bandgap energy, which occurs over a wide range of wavelengths. Moreover, due to the great affinity of the supported nanocatalysts with pesticides, better charge separation, high removal, and degradation values are reported for these organic compounds. Thus, the class of the nanocomposites investigated in this work, magnetic or not, can be characterized as suitable nanomaterials with potential and unique properties useful in heterogeneous photocatalysts and the adsorption of pesticides.


Subject(s)
Nanocomposites , Pesticides , Water Pollutants, Chemical , Animals , Humans , Nanocomposites/chemistry , Pesticides/chemistry , Wastewater , Water/chemistry , Water Pollutants, Chemical/chemistry
14.
PLoS One ; 16(4): e0250377, 2021.
Article in English | MEDLINE | ID: mdl-33901220

ABSTRACT

BACKGROUND: The construction sector is one of the most stable growth industries in the world. However, many studies have suggested an association between occupational exposure in civil construction and lung cancer risk. Thus, this study aims to assess lung cancer risk in civil construction workers occupationally exposed to physical and chemical agents through a systematic review and meta-analysis. METHODS/DESIGN: Studies will be identified by searching PUBMED, Embase, SCOPUS, WEB OF SCIENCE and the reference list of included articles. Eligible study designs will be cohort, cross-sectional, and case-control studies that report occupational exposure to physical or chemical agents and lung cancer risk through mortality or incidence outcomes. A meta-analysis will be used to combine odds ratios (ORs) from case-control studies and relative risks (RR) from cohort studies. Two reviewers will independently screen articles, extract data, and assess scientific quality using standardized forms and ROBINS-E tool if available. Otherwise, the New-Castle Ottawa rating scale will be used. Any of those will also be used in combination with the GRADE approach for quality of evidence. Overall risk estimates and their corresponding 95% confidence intervals (CIs) will be obtained using the random-effects model meta-analysis. This systematic review and meta-analysis will be conducted following the Meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Results will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. DISCUSSION: This review will identify and synthesize studies investigating the association between occupational exposure in the construction industry and lung cancer. The findings will help governmental entities and researchers with evidence-based decision-making because they will integrate and validate the evidence on construction workers' health effects due to occupational exposure. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020164209.


Subject(s)
Construction Industry , Lung Neoplasms/epidemiology , Lung Neoplasms/mortality , Meta-Analysis as Topic , Occupational Diseases/epidemiology , Occupational Diseases/mortality , Systematic Reviews as Topic , Female , Humans , Incidence , Male , Metal Workers , Occupational Exposure/analysis , Risk Factors
15.
Chemosphere ; 244: 125400, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31809933

ABSTRACT

Methylmercury (MeHg) is an organic bioaccumulated mercury derivative that strongly affects the environment and represents a public health problem primarily to riparian communities in South America. Our objective was to investigate the hepatic and neurological effects of MeHg exposure during the phases foetal and breast-feeding and adult in Wistar rats. Wistar rats (n = 10) were divided into 3 groups. Control group received mineral oil; The simple exposure (SE) group was exposed only in adulthood (0.5 mg/kg/day); and double exposure (DE) was pre-exposed to MeHg 0.5 mg/kg/day during pregnancy and breastfeeding (±40 days) and re-exposed to MeHg for 45 days from day 100. After, we evaluated possible abnormalities. Behavioral and biochemical parameters in liver and occipital cortex (CO), markers of liver injury, redox and AKT/GSK3ß/mTOR signaling pathway. Our results showed that both groups treated with MeHg presented significant alterations, such as decreased locomotion and exploration and impaired visuospatial perception. The rats exposed to MeHg showed severe liver damage and increased hepatic glycogen concentration. The MeHg groups showed significant impairment in redox balance and oxidative damage to liver macromolecules and CO. MeHg upregulated the AKT/GSK3ß/mTOR pathway and the phosphorylated form of the Tau protein. In addition, we found a reduction in NeuN and GFAP immunocontent. These results represent the first approach to the hepatotoxic and neural effects of foetal and adult MeHg exposure.


Subject(s)
Environmental Pollutants/toxicity , Methylmercury Compounds/toxicity , Nervous System/drug effects , Animals , Breast Feeding , Female , Fetus/metabolism , Humans , Liver/metabolism , Locomotion , Male , Methylmercury Compounds/metabolism , Oxidation-Reduction , Pregnancy , Rats , Rats, Wistar , Signal Transduction/drug effects , South America
16.
J Food Sci Technol ; 56(12): 5289-5297, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31749476

ABSTRACT

The food product industry is increasingly looking for foods with nutritional properties that can provide health benefits. Additionally, a challenge for the food industry is the use of all raw materials. For these reasons, banana peel that is a raw material from Banana (Musa spp.) fruit emerges as potential for new food product development. Here, we developed powder blends using a lyophilization process for the preparation of flour to potential use in cookies, bread, and pasta products. Three formulations were designed; the main difference in the formulations was the use of banana peel concentration. Our results showed that blends produced with banana peel presented physical-chemical properties considered suitable for use in food industry. Moreover, the evaluated morphological parameters reveal the properties of the powders. The blends formulated with banana peel have more antioxidant properties, showing that the banana peel may be an attractive option to generate powders with high antioxidant properties.

17.
Phytother Res ; 33(5): 1394-1403, 2019 May.
Article in English | MEDLINE | ID: mdl-30868680

ABSTRACT

Obesity is a metabolic disorder associated with adverse health consequences that has increased worldwide at an epidemic rate. This has encouraged many people to utilize nonprescription herbal supplements for weight loss without knowledge of their safety or efficacy. However, mounting evidence has shown that some herbal supplements used for weight loss are associated with adverse effects. Guarana seed powder is a popular nonprescription dietary herb supplement marketed for weight loss, but no study has demonstrated its efficacy or safety when administered alone. Wistar rats were fed four different diets (low-fat diet and Western diet with or without guarana supplementation) for 18 weeks. Metabolic parameters, gut microbiota changes, and toxicity were then characterized. Guarana seed powder supplementation prevented weight gain, insulin resistance, and adipokine dysregulation induced by Western diet compared with the control diet. Guarana induced brown adipose tissue expansion, mitochondrial biogenesis, uncoupling protein-1 overexpression, AMPK activation, and minor changes in gut microbiota. Molecular docking suggested a direct activation of AMPK by four guarana compounds tested here. We propose that brown adipose tissue activation is one of the action mechanisms involved in guarana supplementation-induced weight loss and that direct AMPK activation may underlie this mechanism. In summary, guarana is an attractive potential therapeutic agent to treat obesity.


Subject(s)
Adipokines/metabolism , Adipose Tissue, Brown/drug effects , Insulin Resistance , Paullinia/chemistry , Animals , Diet, High-Fat/adverse effects , Diet, Western , Dietary Supplements , Humans , Male , Molecular Docking Simulation , Obesity/metabolism , Rats , Rats, Wistar , Weight Gain , Weight Loss/drug effects
18.
Neurochem Int ; 125: 25-34, 2019 05.
Article in English | MEDLINE | ID: mdl-30739037

ABSTRACT

Vitamin A (retinol) is involved in signaling pathways regulating gene expression and was postulated to be a major antioxidant and anti-inflammatory compound of the diet. Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by loss of nigral dopaminergic neurons, involving oxidative stress and pro-inflammatory activation. The aim of the present study was to evaluate the neuroprotective effects of retinol oral supplementation against 6-hydroxydopamine (6-OHDA, 12 µg per rat) nigrostriatal dopaminergic denervation in Wistar rats. Animals supplemented with retinol (retinyl palmitate, 3000 IU/kg/day) during 28 days exhibited increased retinol content in liver, although circulating retinol levels (serum) were unaltered. Retinol supplementation did not protect against the loss of dopaminergic neurons (assessed through tyrosine hydroxylase immunofluorescence and Western blot). Retinol supplementation prevented the effect of 6-OHDA on Iba-1 levels but had no effect on 6-OHDA-induced GFAP increase. Moreover, GFAP levels were increased by retinol supplementation alone. Rats pre-treated with retinol did not present oxidative damage or thiol redox modifications in liver, and the circulating levels of TNF-α, IL-1ß, IL-6 and IL-10 were unaltered by retinol supplementation, demonstrating that the protocol used here did not cause systemic toxicity to animals. Our results indicate that oral retinol supplementation is not able to protect against 6-OHDA-induced dopaminergic denervation, and it may actually stimulate astrocyte reactivity without altering parameters of systemic toxicity.


Subject(s)
Disease Models, Animal , Dopaminergic Neurons/drug effects , Nerve Degeneration/chemically induced , Nerve Degeneration/drug therapy , Sympathectomy, Chemical/methods , Vitamin A/administration & dosage , Administration, Oral , Animals , Dopaminergic Neurons/metabolism , Male , Nerve Degeneration/metabolism , Organ Culture Techniques , Rats , Rats, Wistar , Treatment Outcome
19.
Neurochem Int ; 124: 114-122, 2019 03.
Article in English | MEDLINE | ID: mdl-30639195

ABSTRACT

OBJECTIVE: Some factors related to lifestyle, including stress and high-fat diet (HFD) consumption, are associated with higher prevalence of obesity. These factors can lead to an imbalance between ROS production and antioxidant defenses and to mitochondrial dysfunctions, which, in turn, could cause metabolic impairments, favoring the development of obesity. However, little is known about the interplay between these factors, particularly at early ages, and whether long-term sex-specific changes may occur. Here, we evaluated whether social isolation during the prepubertal period only, associated or not with chronic HFD, can exert long-term effects on oxidative status parameters and on mitochondrial function in the whole hypothalamus, in a sex-specific manner. METHODS: Wistar male and female rats were divided into two groups (receiving standard chow or standard chow + HFD), that were subdivided into exposed or not to social isolation during the prepubertal period. Oxidative status parameters, and mitochondrial function were evaluated in the hypothalamus in the adult age. RESULTS: Regarding antioxidant enzymes activities, HFD decreased GPx activity in the hypothalamus, while increasing SOD activity in females. Females also presented increased total thiols; however, non-protein thiols were lower. Main effects of stress and HFD were observed in TBARS levels in males, with both factors decreasing this parameter. Additionally, HFD increased complex IV activity, and decreased mitochondrial mass in females. Complex I-III activity was higher in males compared to females. CONCLUSION: Stress during the prepubertal period and chronic consumption of HFD had persistent sex-specific effects on oxidative status, as well as on its consequences for the cell and for mitochondrial function. HFD had more detrimental effects on females, inducing oxidative imbalance, which resulted in damage to the mitochondria. This HFD-induced imbalance may be related to the development of obesity.


Subject(s)
Diet, High-Fat/adverse effects , Hypothalamus/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Sex Characteristics , Stress, Psychological/metabolism , Animals , Female , Male , Membrane Potentials/physiology , Rats , Rats, Wistar , Sexual Maturation/physiology , Stress, Psychological/psychology
20.
Neurotoxicology ; 69: 164-180, 2018 12.
Article in English | MEDLINE | ID: mdl-30316701

ABSTRACT

Fish consumption and ubiquitous methylmercury (MeHg) exposure represent a public health problem globally. Micronutrients presented in fish affects MeHg uptake/distribution. Vitamin A (VitA), another fish micronutrient is used in nutritional supplementation, especially during pregnancy. However, there is no information about the health effects arising from their combined exposure. The present study aimed to examine the effects of both MeHg and retinyl palmitate administered to pregnant and lactating rats. Thirty Wistar female rats were orally supplemented with MeHg (0,5 mg/Kg/day) and retinyl palmitate (7500 µg RAE1/Kg/day), either individually or in combination from the gestational day 0 to weaning. In dams, maternal behavior was scored. In neonatal and infant offspring, associative learning and neurodevelopment were evaluated. Further periadolescent male and female pups were assessed for open field, habituation and object recognition using episodic-like memory paradigm. Maternal and offspring redox parameters were evaluated. Our results showed no effects of MeHg-VitA co-administration in the quality of maternal care but showed subtle alterations in the pro-oxidant response of the hippocampus. In offspring, MeHg-VitA co-exposure affected early associative learning in neonatal pups, with no further modifications in neurodevelopment, and no locomotor or exploratory alterations in later developmental stages. Habituation was altered in a sex-dependent manner, but no overall memory disturbances were encountered. Finally, MeHg-VitA co-administration reduced lipoperoxidation in male offspring hippocampus. In conclusion, VitA co-administration in dams, under our exposure protocol, can counteract the deleterious neurodevelopmental effects solely attributed to low-dose MeHg in a tissue-specific mechanism, suggesting a protective effect of VitA against MeHg-induced oxidative damage in the central nervous system, especially in the offspring. Further work is needed to confirm our findings and elucidate the molecular mechanisms of MeHg-VitA modulation. Pre-clinical assays are necessary to demonstrate the potential therapeutical use of VitA in populations directly or indirectly exposed to MeHg.


Subject(s)
Lactation/drug effects , Locomotion/drug effects , Methylmercury Compounds/administration & dosage , Oxidative Stress/drug effects , Prenatal Exposure Delayed Effects/chemically induced , Vitamin A/analogs & derivatives , Animals , Anticarcinogenic Agents/administration & dosage , Association Learning/drug effects , Association Learning/physiology , Diterpenes , Drug Combinations , Female , Lactation/physiology , Locomotion/physiology , Male , Methylmercury Compounds/toxicity , Odorants , Oxidative Stress/physiology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Random Allocation , Rats , Rats, Wistar , Retinyl Esters , Vitamin A/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...