Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 77: 108-120, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32823210

ABSTRACT

The Clatterbridge Cancer Centre (CCC) in the United Kingdom is the world's first hospital proton beam therapy facility, providing treatment for ocular cancers since 1989. A 62 MeV beam of protons is produced by a Scanditronix cyclotron and transported through a passive delivery system. In addition to the long history of clinical use, the facility supports a wide programme of experimental work and as such, an accurate and reliable simulation model of the treatment beamline is highly valuable. However, as the facility has seen several changes to the accelerator and beamline over the years, a comprehensive study of the CCC beam dynamics is needed to firstly examine the beam optics. An extensive analysis was required to overcome facility related constraints to determine fundamental beamline parameters and define an optical lattice written with the Methodical Accelerator Design (MAD-X) and the particle tracking Beam Delivery Simulation (BDSIM) code. An optimised case is presented and simulated results of the optical functions, beam distribution, losses and the transverse rms beam sizes along the beamline are discussed. Corresponding optical and beam information was used in TOPAS to simulate transverse beam profiles and compared to EBT3 film measurements. We provide an overview of the magnetic components, beam transport, cyclotron, beam and treatment related parameters necessary for the development of a present day optical model of the facility. This work represents the first comprehensive study of the CCC facility to date, as a basis to determine input beam parameters to accurately simulate and completely characterise the beamline.


Subject(s)
Neoplasms , Proton Therapy , Cyclotrons , Monte Carlo Method , Protons , Synchrotrons , United Kingdom
2.
Phys Med Biol ; 61(16): N386-93, 2016 08 21.
Article in English | MEDLINE | ID: mdl-27435446

ABSTRACT

Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.


Subject(s)
Protons , Radiometry/methods , Radiometry/standards , Calibration , Humans , Radiation Dosage , Radiometry/instrumentation , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...