Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(4): e0194965, 2018.
Article in English | MEDLINE | ID: mdl-29617426

ABSTRACT

The posterior auricular muscle (PAM) reflex to sounds has been used clinically to determine hearing threshold as an alternative to other audiological diagnostic measures such as the auditory brainstem response. We have shown that the PAM response is also sensitive to interaural timing differences in normally hearing adults. PAM responses were evoked by both ipsilateral/ contralateral monaural stimulation and by binaural stimulation. Introducing sound delays ipsilaterally or contralaterally decreased the PAM response amplitude and increased its latency. The PAM response in this study shows a qualitatively similar pattern to that seen by the binaural interaction component (BIC) of the auditory brainstem potential to binaural clicks described in previous studies, in that both: have their shortest latency and maximal amplitudes centred around zero interaural timing differences, have response latencies increase with increasing interaural delays up to 1.2 ms and have response amplitudes decrease with increasing interaural delays of up to 1.2 ms. Our data show that the PAM response may be useful in measuring binaural integration in humans non-invasively for diagnostic or research studies.


Subject(s)
Brain Stem/physiology , Evoked Potentials, Auditory, Brain Stem/physiology , Acoustic Stimulation , Adult , Electromyography , Healthy Volunteers , Hearing/physiology , Hearing Tests , Humans
2.
Neuroimage ; 53(2): 399-411, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20633665

ABSTRACT

Increases in neuronal activity induce local increases in cerebral perfusion. However, our understanding of the processes underlying this neurovascular coupling remains incomplete and, particularly, how these vary across the brain. Recent work supports an important role for astrocytes in neurovascular coupling, in large part via activation of their metabotropic glutamate receptors (mGluR). Here, using a combination of functional magnetic resonance imaging (fMRI) and electrophysiology we demonstrate regional heterogeneity in the mechanisms underlying neurovascular coupling. Direct electrical stimulation of the rat hindpaw sensorimotor cortex induces blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) fMRI responses in several anatomically distinct cortical and subcortical structures. Following intraperitoneal administration of the type 5 mGluR antagonist, MPEP, both BOLD and CBV responses to cortical stimulation were significantly reduced, whilst the local field potential (LFP) responses remained largely constant. Spatially, the degree of reduction in fMRI responses varied between cortical and subcortical regions (primary cortex approximately 18% vs. striatum approximately 66%), and also between primary and secondary cortical areas ( approximately 18% vs. approximately 55%). Similarly, greater decreases in response amplitude were seen in the contralateral secondary cortex ( approximately 91%) and ipsilateral striatum (approximately 70%), compared to the primary cortex (approximately 44%). Following MPEP, a negative component of the BOLD and CBV responses became more apparent, suggesting that different mechanisms mediate vasodilatory and vasoconstrictory responses. Interestingly, under baseline conditions the quantitative relationship between fMRI and LFP responses in cortical and subcortical regions was markedly different. Our data indicate that coupling between neuronal and fMRI responses is neither empirically nor mechanistically consistent across the brain.


Subject(s)
Brain/anatomy & histology , Cerebrovascular Circulation/physiology , Animals , Astrocytes/metabolism , Blood Pressure/drug effects , Blood Pressure/physiology , Brain/drug effects , Cerebral Cortex/physiology , Cerebrovascular Circulation/drug effects , Electric Stimulation , Electroencephalography , Evoked Potentials/physiology , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/physiology , Magnetic Resonance Imaging , Neurons/metabolism , Oxygen/blood , Pyridines/pharmacology , Rats , Receptor, Metabotropic Glutamate 5 , Receptors, Glutamate/physiology , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/physiology , Signal Transduction/physiology
3.
Eur J Neurosci ; 26(8): 2359-68, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17953623

ABSTRACT

Recent reports have shown that responses of midbrain neurons in the guinea pig rapidly shift the dynamic range of their responses to track changes in the statistics of ongoing sound-level distributions. This results in an increased coding accuracy for the most commonly occurring stimulus intensities. To investigate whether this type of adaptation might also be found in other sensory modalities, we characterized the intensity-response functions of neurons in rat primary somatosensory cortex (S1) to continuous sinusoidal vibration of the whiskers with amplitudes that were changed every 40 ms. Vibration amplitudes were selected randomly such that there was an 80% chance for the amplitude to be drawn from a relatively narrow 'high-probability region' (HPR). Stimulus mean and variance were then manipulated by shifting or widening the HPR. We found that rat S1 neurons adapt to shifts of the HPR mainly by shifting their thresholds, and to changes in HPR width by changing the slope of their rate-level curves. Using realistic single-neuron models, we go on to show that after-hyperpolarizing currents, such as those carried by K(Ca)(2+) channels, may be responsible for the threshold shifts, but not the slope changes.


Subject(s)
Adaptation, Physiological/physiology , Neurons/physiology , Nonlinear Dynamics , Somatosensory Cortex/physiology , Vibrissae , Acoustic Stimulation/methods , Animals , Computer Simulation , Dose-Response Relationship, Radiation , Electric Stimulation/methods , Models, Neurological , Rats , Somatosensory Cortex/cytology
4.
Curr Biol ; 16(3): 264-71, 2006 Feb 07.
Article in English | MEDLINE | ID: mdl-16461279

ABSTRACT

The amplitude and pitch fluctuations of natural soundscapes often exhibit "1/f spectra", which means that large, abrupt changes in pitch or loudness occur proportionally less frequently in nature than gentle, gradual fluctuations. Furthermore, human listeners reportedly prefer 1/f distributed random melodies to melodies with faster (1/f0) or slower (1/f2) dynamics. One might therefore suspect that neurons in the central auditory system may be tuned to 1/f dynamics, particularly given that recent reports provide evidence for tuning to 1/f dynamics in primary visual cortex. To test whether neurons in primary auditory cortex (A1) are tuned to 1/f dynamics, we recorded responses to random tone complexes in which the fundamental frequency and the envelope were determined by statistically independent "1/f(gamma) random walks," with gamma set to values between 0.5 and 4. Many A1 neurons showed clear evidence of tuning and responded with higher firing rates to stimuli with gamma between 1 and 1.5. Response patterns elicited by 1/f(gamma) stimuli were more reproducible for values of gamma close to 1. These findings indicate that auditory cortex is indeed tuned to the 1/f dynamics commonly found in the statistical distributions of natural soundscapes.


Subject(s)
Auditory Cortex/physiology , Neurons/physiology , Pitch Perception/physiology , Sound , Acoustic Stimulation , Animals , Electrophysiology , Ferrets , Sound Spectrography , Stochastic Processes
5.
Trends Cogn Sci ; 5(6): 261-270, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-11390297

ABSTRACT

In order to pinpoint the location of a sound source, we make use of a variety of spatial cues that arise from the direction-dependent manner in which sounds interact with the head, torso and external ears. Accurate sound localization relies on the neural discrimination of tiny differences in the values of these cues and requires that the brain circuits involved be calibrated to the cues experienced by each individual. There is growing evidence that the capacity for recalibrating auditory localization continues well into adult life. Many details of how the brain represents auditory space and of how those representations are shaped by learning and experience remain elusive. However, it is becoming increasingly clear that the task of processing auditory spatial information is distributed over different regions of the brain, some working hierarchically, others independently and in parallel, and each apparently using different strategies for encoding sound source location.

SELECTION OF CITATIONS
SEARCH DETAIL
...