Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29507073

ABSTRACT

Cutaneous leishmaniasis (CL) is caused by several species of the protozoan parasite Leishmania, affecting an estimated 10 million people worldwide. Previously reported strategies for the development of topical CL treatments have focused primarily on drug permeation and formulation optimization as the means to increase treatment efficacy. Our approach aims to identify compounds with antileishmanial activity and properties consistent with topical administration. Of the test compounds, five benzoxaboroles showed potent activity (50% effective concentration [EC50] < 5 µM) against intracellular amastigotes of at least one Leishmania species and acceptable activity (20 µM < EC50 < 30 µM) against two more species. Benzoxaborole compounds were further prioritized on the basis of the in vitro evaluation of progression criteria related to skin permeation, such as the partition coefficient and solubility. An MDCKII-hMDR1 cell assay showed overall good permeability and no significant interaction with the P-glycoprotein transporter for all substrates except LSH002 and LSH031. The benzoxaboroles were degraded, to some extent, by skin enzymes but had stability superior to that of para-hydroxybenzoate compounds, which are known skin esterase substrates. Evaluation of permeation through reconstructed human epidermis showed LSH002 to be the most permeant, followed by LSH003 and LSH001. Skin disposition studies following finite drug formulation application to mouse skin demonstrated the highest permeation for LSH001, followed by LSH003 and LSH002, with a significantly larger amount of LSH001 than the other compounds being retained in skin. Finally, the efficacy of the leads (LSH001, LSH002, and LSH003) against Leishmania major was tested in vivo LSH001 suppressed lesion growth upon topical application, and LSH003 reduced the lesion size following oral administration.


Subject(s)
Antiprotozoal Agents/pharmacokinetics , Antiprotozoal Agents/therapeutic use , Leishmaniasis, Cutaneous/drug therapy , Administration, Oral , Administration, Topical , Antiprotozoal Agents/administration & dosage , Boron Compounds/administration & dosage , Boron Compounds/pharmacokinetics , Boron Compounds/therapeutic use , Leishmaniasis, Cutaneous/parasitology
2.
Xenobiotica ; 41(3): 232-42, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21226652

ABSTRACT

1. AZD0328 was pharmacologically characterized as a α7 neuronal nicotinic receptor agonist intended for treatment of Alzheimer's disease. In vitro AZD0328 cross species metabolite profile and enzyme identification for its N-oxide metabolite were evaluated in this study. 2. AZD0328 was very stable in the human hepatocyte incubation, whereas extensively metabolized in rat, dog and guinea pig hepatocyte incubations. The N-oxidation metabolite (M6) was the only metabolite detected in human hepatocyte incubations, and it also appeared to be the major in vitro metabolic pathway in a number of preclinical species. In addition, N-glucuronide metabolite of AZD0328 was observed in human liver microsomes. 3. Other metabolic pathways in the preclinical species include hydroxylation in azabicyclo octane or furopyridine part of the molecule. Pyridine N-methylation of AZD0328 (M2) was identified as a dog specific metabolite, not observed in human or other preclinical species. 4. Multiple enzymes including CYP2D6, CYP3A4/5, FMO1 and FMO3 catalyzed AZD0328 metabolism. The potential for AZD0328 to be inhibited clinically by co-administered drugs or genetic polymorphism is relative low.


Subject(s)
Cyclic N-Oxides/metabolism , Furans/metabolism , Nicotinic Agonists/metabolism , Quinuclidines/metabolism , Animals , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytosol/metabolism , Dogs , Female , Guinea Pigs , Hepatocytes/metabolism , Humans , Male , Oxygenases/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...