Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 10(6)2022 06.
Article in English | MEDLINE | ID: mdl-35688554

ABSTRACT

BACKGROUND: Despite the preclinical promise of CD40 and 4-1BB as immuno-oncology targets, clinical efforts evaluating CD40 and 4-1BB agonists as monotherapy have found limited success. DuoBody-CD40×4-1BB (GEN1042/BNT312) is a novel investigational Fc-inert bispecific antibody for dual targeting and conditional stimulation of CD40 and 4-1BB to enhance priming and reactivation of tumor-specific immunity in patients with cancer. METHODS: Characterization of DuoBody-CD40×4-1BB in vitro was performed in a broad range of functional immune cell assays, including cell-based reporter assays, T-cell proliferation assays, mixed-lymphocyte reactions and tumor-infiltrating lymphocyte assays, as well as live-cell imaging. The in vivo activity of DuoBody-CD40×4-1BB was assessed in blood samples from patients with advanced solid tumors that were treated with DuoBody-CD40×4-1BB in the dose-escalation phase of the first-in-human clinical trial (NCT04083599). RESULTS: DuoBody-CD40×4-1BB exhibited conditional CD40 and 4-1BB agonist activity that was strictly dependent on crosslinking of both targets. Thereby, DuoBody-CD40×4-1BB strengthened the dendritic cell (DC)/T-cell immunological synapse, induced DC maturation, enhanced T-cell proliferation and effector functions in vitro and enhanced expansion of patient-derived tumor-infiltrating lymphocytes ex vivo. The addition of PD-1 blocking antibodies resulted in potentiation of T-cell activation and effector functions in vitro compared with either monotherapy, providing combination rationale. Furthermore, in a first-in-human clinical trial, DuoBody-CD40×4-1BB mediated clear immune modulation of peripheral antigen presenting cells and T cells in patients with advanced solid tumors. CONCLUSION: DuoBody-CD40×4-1BB is capable of enhancing antitumor immunity by modulating DC and T-cell functions and shows biological activity in patients with advanced solid tumors. These findings demonstrate that targeting of these two pathways with an Fc-inert bispecific antibody may be an efficacious approach to (re)activate tumor-specific immunity and support the clinical investigation of DuoBody-CD40×4-1BB for the treatment of cancer.


Subject(s)
Antibodies, Bispecific , Neoplasms , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , CD40 Antigens/metabolism , Clinical Trials as Topic , Humans , Lymphocyte Activation , Neoplasms/therapy , T-Lymphocytes
2.
Oncoimmunology ; 11(1): 2030135, 2022.
Article in English | MEDLINE | ID: mdl-35186440

ABSTRACT

Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis have changed the treatment paradigm for advanced solid tumors; however, many patients experience treatment resistance. In preclinical models 4-1BB co-stimulation synergizes with ICI by activating cytotoxic T- and NK-cell-mediated anti-tumor immunity. Here we characterize the mechanism of action of a mouse-reactive Fc-inert PD-L1×4-1BB bispecific antibody (mbsAb-PD-L1×4-1BB) and provide proof-of-concept for enhanced anti-tumor activity. In reporter assays mbsAb-PD-L1×4-1BB exhibited conditional 4-1BB agonist activity that was dependent on simultaneous binding to PD-L1. mbsAb-PD-L1×4-1BB further blocked the PD-L1/PD-1 interaction independently of 4-1BB binding. By combining both mechanisms, mbsAb-PD-L1×4-1BB strongly enhanced T-cell proliferation, cytokine production and antigen-specific cytotoxicity using primary mouse cells in vitro. Furthermore, mbsAb-PD-L1×4-1BB exhibited potent anti-tumor activity in the CT26 and MC38 models in vivo, leading to the rejection of CT26 tumors that were unresponsive to PD-L1 blockade alone. Anti-tumor activity was associated with increased tumor-specific CD8+ T cells and reduced regulatory T cells within the tumor microenvironment and tumor-draining lymph nodes. In immunocompetent tumor-free mice, mbsAb-PD-L1×4-1BB treatment neither induced T-cell infiltration into the liver nor elevated liver enzymes in the blood. Dual targeting of PD-L1 and 4-1BB with a bispecific antibody may therefore address key limitations of first generation 4-1BB-agonistic antibodies, and may provide a novel approach to improve PD-1/PD-L1 checkpoint blockade.


Subject(s)
Antibodies, Bispecific , Neoplasms , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , B7-H1 Antigen , CD8-Positive T-Lymphocytes , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/therapeutic use , Tumor Microenvironment
3.
Cancer Discov ; 12(5): 1248-1265, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35176764

ABSTRACT

Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule. GEN1046 induced T-cell proliferation, cytokine production, and antigen-specific T-cell-mediated cytotoxicity superior to clinically approved PD-(L)1 antibodies in human T-cell cultures and exerted potent antitumor activity in transplantable mouse tumor models. In dose escalation of the ongoing first-in-human study in heavily pretreated patients with advanced refractory solid tumors (NCT03917381), GEN1046 demonstrated pharmacodynamic immune effects in peripheral blood consistent with its mechanism of action, manageable safety, and early clinical activity [disease control rate: 65.6% (40/61)], including patients resistant to prior PD-(L)1 immunotherapy. SIGNIFICANCE: DuoBody-PD-L1×4-1BB (GEN1046) is a first-in-class bispecific immunotherapy with a manageable safety profile and encouraging preclinical and early clinical activity. With its ability to confer clinical benefit in tumors typically less sensitive to CPIs, GEN1046 may fill a clinical gap in CPI-relapsed or refractory disease or as a combination therapy with CPIs. See related commentary by Li et al., p. 1184. This article is highlighted in the In This Issue feature, p. 1171.


Subject(s)
Antibodies, Bispecific , Neoplasms , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , B7-H1 Antigen , Disease Models, Animal , Humans , Immunotherapy/methods , Mice , Neoplasms/drug therapy , T-Lymphocytes
4.
Stem Cell Reports ; 8(6): 1472-1478, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28506535

ABSTRACT

Blood cell generation depends on continuous cellular output by the sequential hierarchy of hematopoietic stem cell (HSC) and progenitor populations that all contain quiescent and actively cycling cells. Hematopoietic stem and progenitor cells (HSPCs) express the surface molecule Stem cell antigen 1 (SCA-1/LY6A). Using histone 2B-red fluorescent fusion protein label retention and cell-cycle reporter mice, we demonstrate that high SCA-1 expression (SCA-1hi) identifies not only quiescent HSCs but quiescent cells on all hierarchical levels within the lineage-SCA-1+KIT+ (LSK) population. Each transplanted SCA-1hi HSPC population also displayed self-renewal potential superior to that of the respective SCA-1lo population. SCA-1 expression is inducible by type I interferon (IFN). We show, however, that quiescence and high self-renewal capacity of cells with brighter SCA-1 expression at steady state were independent of type I IFN signaling. We conclude that SCA-1 expression levels can be used to prospectively isolate functionally heterogeneous HSPC subpopulations.


Subject(s)
Antigens, Ly/metabolism , Hematopoietic Stem Cells/metabolism , Membrane Proteins/metabolism , Animals , Antigens, Ly/genetics , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Self Renewal , Cells, Cultured , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Histones/genetics , Histones/metabolism , Interferon Type I/metabolism , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Signal Transduction , Transplantation, Homologous
5.
Exp Hematol ; 45: 45-55.e6, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27664314

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and, in most cases, is of pro- or pre-B cell origin (B-ALL). The receptor tyrosine kinase KIT is expressed by hematopoietic stem and precursor cells. Gain-of-function mutations of KIT cause systemic mastocytosis, which is characterized by abnormal accumulations of mast cells. We previously reported a mouse model of mastocytosis based on conditional expression of a constitutively active Kit protein. Half of these animals developed leukemic disease of B-lineage origin. Herein, we report that this condition bears striking similarities to human B-ALL. The immuno-phenotype of the leukemic cells was compatible with a pro-B-cell origin, as was the finding of immunoglobulin heavy-chain gene rearrangements in all cases, whereas light-chain loci were mostly not rearranged. Leukemogenesis was independent of pre-B-cell receptor expression. Primary leukemic cells and permanent cell lines derived from these were serially transplantable and rapidly killed the recipients. In a few animals, the leukemia was of T-cell origin with abnormal CD4/8 double-positive T-cell precursors dominating in the circulation. In summary, we report a novel ALL mouse model that may prove useful for in vivo drug testing and identification of novel oncogenic mutations and principles.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Biomarkers , Cell Transformation, Neoplastic/genetics , Disease Models, Animal , Enzyme Activation , Gene Rearrangement, B-Lymphocyte , Genetic Loci , Humans , Immunoglobulin Heavy Chains/genetics , Immunophenotyping , Mice , Mice, Transgenic , Mutation , Phenotype , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cells, B-Lymphoid/metabolism , Precursor Cells, B-Lymphoid/pathology , Proto-Oncogene Proteins c-kit/genetics , Receptors, Antigen, B-Cell/metabolism , Signal Transduction
6.
Blood ; 128(19): 2285-2296, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27357698

ABSTRACT

Long-term repopulating (LT) hematopoietic stem cells (HSCs) are the most undifferentiated cells at the top of the hematopoietic hierarchy. The regulation of HSC pool size and its contribution to hematopoiesis are incompletely understood. We depleted hematopoietic stem and progenitor cells (HSPCs) in adult mice in situ and found that LT-HSCs recovered from initially very low levels (<1%) to below 10% of normal numbers but not more, whereas progenitor cells substantially recovered shortly after depletion. In spite of the persistent and massive reduction of LT-HSCs, steady-state hematopoiesis was unaffected and residual HSCs remained quiescent. Hematopoietic stress, although reported to recruit quiescent HSCs into cycle, was well tolerated by HSPC-depleted mice and did not induce expansion of the small LT-HSC compartment. Only upon 5-fluorouracil treatment was HSPC-depleted bone marrow compromised in reconstituting hematopoiesis, demonstrating that HSCs and early progenitors are crucial to compensate myeloablation. Hence, a contracted HSC compartment cannot recover in situ to its original size, and normal steady-state blood cell generation is sustained with <10% of normal LT-HSC numbers without increased contribution of the few residual cells.


Subject(s)
Hematopoiesis , Hematopoietic Stem Cells/cytology , Stress, Physiological , Animals , Cell Count , Cell Proliferation , Mice, Inbred C57BL , Stem Cell Niche
SELECTION OF CITATIONS
SEARCH DETAIL
...