Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Blood Adv ; 8(6): 1504-1508, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38330194

ABSTRACT

ABSTRACT: Metachromatic leukodystrophy (MLD) is a rare genetic disorder caused by pathogenic variants of the ARSA gene, leading to a deficiency of the arylsulfatase A enzyme (ARSA) and consecutive accumulation of galactosylceramide-3-0-sulfate in the nervous system. The condition leads to severe neurological deficits and subsequently results in profound intellectual and motoric disability. Especially, the adult form of MLD, which occurs in individuals aged >16 years, poses significant challenges for treating physicians because of the rarity of cases, limited therapeutic options, and different allogeneic hematopoietic cell transplantation (allo-HCT) protocols worldwide. Here, we report the results of allo-HCT treatment in 4 patients with a confirmed adult MLD diagnosis. Bone marrow or mobilized peripheral progenitor cells were infused after a reduced intensity conditioning regime consisting of fludarabine and treosulfan. In 3 patients, allo-HCT was followed by an infusion of mesenchymal cells to further consolidate ARSA production. We observed a good tolerability and an increase in ARSA levels up to normal range values in all patients. A full donor chimerism was detected in 3 patients within the first 12 months. In a 1-year follow-up, patients with complete donor chimerism showed a neurological stable condition. Only 1 patient with an increasing autologous chimerism showed neurological deterioration and a decline in ARSA levels in the first year. In summary, allo-HCT offers a therapeutic option for reconstituting ARSA enzyme levels in adult patients with MLD, with tolerable side effects.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukodystrophy, Metachromatic , Adult , Humans , Leukodystrophy, Metachromatic/therapy , Cerebroside-Sulfatase/genetics
2.
Int J Mol Sci ; 23(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35216386

ABSTRACT

Variants in MFSD8 can cause neuronal ceroid lipofuscinoses (NCLs) as well as nonsyndromic retinopathy. The mutation spectrum includes mainly missense and stop variants, but splice sites and frameshift variants have also been reported. To date, apparently synonymous substitutions have not been shown to cause MFSD8-associated diseases. We report two closely related subjects from a consanguineous Turkish family who presented classical features of NCLs but demonstrated marked intrafamilial variability in age at the onset and severity of symptoms. In fact, the difference in the onset of first neurologic symptoms was 15 years and that of ophthalmologic symptoms was 12 years. One subject presented an intellectual disability and a considerable cerebellar ataxia syndrome, while the other subject showed no intellectual disability and only a mild atactic syndrome. The diagnostic genetic testing of both subjects based on genome sequencing prioritized a novel, apparently synonymous variant in MFSD8, which was found in homozygosity in both subjects. The variant was not located within an integral part of the splice site consensus sequences. However, the bioinformatic analyses suggested that the mutant allele is more likely to cause exon skipping due to an altered ratio of exonic splice enhancer and silencer motifs. Exon skipping was confirmed in vitro by minigene assays and in vivo by RNA analysis from patient lymphocytes. The mutant transcript is predicted to result in a frameshift and, if translated, in a truncated protein. Synonymous variants are often given a low priority in genetic diagnostics because of their expected lack of functional impact. This study highlights the importance of investigating the impact of synonymous variants on splicing.


Subject(s)
Frameshift Mutation/genetics , Membrane Transport Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Adolescent , Adult , Female , Homozygote , Humans , Male , Pedigree , Young Adult
3.
Mov Disord ; 36(10): 2273-2281, 2021 10.
Article in English | MEDLINE | ID: mdl-33951232

ABSTRACT

BACKGROUND: Given that new therapeutic options for spinocerebellar ataxias are on the horizon, there is a need for markers that reflect disease-related alterations, in particular, in the preataxic stage, in which clinical scales are lacking sensitivity. OBJECTIVE: The objective of this study was to quantify regional brain volumes and upper cervical spinal cord areas in spinocerebellar ataxia type 3 in vivo across the entire time course of the disease. METHODS: We applied a brain segmentation approach that included a lobular subsegmentation of the cerebellum to magnetic resonance images of 210 ataxic and 48 preataxic spinocerebellar ataxia type 3 mutation carriers and 63 healthy controls. In addition, cervical cord cross-sectional areas were determined at 2 levels. RESULTS: The metrics of cervical spinal cord segments C3 and C2, medulla oblongata, pons, and pallidum, and the cerebellar anterior lobe were reduced in preataxic mutation carriers compared with controls. Those of cervical spinal cord segments C2 and C3, medulla oblongata, pons, midbrain, cerebellar lobules crus II and X, cerebellar white matter, and pallidum were reduced in ataxic compared with nonataxic carriers. Of all metrics studied, pontine volume showed the steepest decline across the disease course. It covaried with ataxia severity, CAG repeat length, and age. The multivariate model derived from this analysis explained 46.33% of the variance of pontine volume. CONCLUSION: Regional brain and spinal cord tissue loss in spinocerebellar ataxia type 3 starts before ataxia onset. Pontine volume appears to be the most promising imaging biomarker candidate for interventional trials that aim at slowing the progression of spinocerebellar ataxia type 3. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Machado-Joseph Disease , Spinocerebellar Ataxias , Brain/diagnostic imaging , Cerebellum , Humans , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/genetics
4.
Front Neurol ; 12: 788168, 2021.
Article in English | MEDLINE | ID: mdl-35185751

ABSTRACT

A comprehensive review of published literature was conducted to elucidate the genetics, neuropathology, imaging findings, prevalence, clinical course, diagnosis/clinical evaluation, potential biomarkers, and current and proposed treatments for adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a rare, debilitating, and life-threatening neurodegenerative disorder for which disease-modifying therapies are not currently available. Details on potential efficacy endpoints for future interventional clinical trials in patients with ALSP and data related to the burden of the disease on patients and caregivers were also reviewed. The information in this position paper lays a foundation to establish an effective clinical rationale and address the clinical gaps for creation of a robust strategy to develop therapeutic agents for ALSP, as well as design future clinical trials, that have clinically meaningful and convergent endpoints.

5.
Neurology ; 95(24): e3163-e3179, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33144514

ABSTRACT

OBJECTIVE: To test the hypothesis that monogenic neuropathies such as Charcot-Marie-Tooth disease (CMT) contribute to frequent but often unexplained neuropathies in the elderly, we performed genetic analysis of 230 patients with unexplained axonal neuropathies and disease onset ≥35 years. METHODS: We recruited patients, collected clinical data, and conducted whole-exome sequencing (WES; n = 126) and MME single-gene sequencing (n = 104). We further queried WES repositories for MME variants and measured blood levels of the MME-encoded protein neprilysin. RESULTS: In the WES cohort, the overall detection rate for assumed disease-causing variants in genes for CMT or other conditions associated with neuropathies was 18.3% (familial cases 26.4%, apparently sporadic cases 12.3%). MME was most frequently involved and accounted for 34.8% of genetically solved cases. The relevance of MME for late-onset neuropathies was further supported by detection of a comparable proportion of cases in an independent patient sample, preponderance of MME variants among patients compared to population frequencies, retrieval of additional late-onset neuropathy patients with MME variants from WES repositories, and low neprilysin levels in patients' blood samples. Transmission of MME variants was often consistent with an incompletely penetrant autosomal-dominant trait and less frequently with autosomal-recessive inheritance. CONCLUSIONS: A detectable fraction of unexplained late-onset axonal neuropathies is genetically determined, by variants in either CMT genes or genes involved in other conditions that affect the peripheral nerves and can mimic a CMT phenotype. MME variants can act as completely penetrant recessive alleles but also confer dominantly inherited susceptibility to axonal neuropathies in an aging population.


Subject(s)
Aging , Hereditary Sensory and Motor Neuropathy/genetics , Neprilysin/genetics , Age of Onset , Aged , Aging/blood , Charcot-Marie-Tooth Disease/blood , Charcot-Marie-Tooth Disease/genetics , Female , Genetic Predisposition to Disease/genetics , Hereditary Sensory and Motor Neuropathy/blood , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neprilysin/blood , Exome Sequencing
6.
Cell Physiol Biochem ; 42(5): 2066-2077, 2017.
Article in English | MEDLINE | ID: mdl-28803243

ABSTRACT

BACKGROUND: The widely expressed protein chorein fosters activation of the phosphoinositide 3 kinase (PI3K) pathway thus supporting cell survival. Loss of function mutations of the chorein encoding gene VPS13A (vacuolar protein sorting-associated protein 13A) causes chorea-acanthocytosis (ChAc), a neurodegenerative disorder paralleled by deformations of erythrocytes. In mice, genetic knockout of chorein leads to enhanced neuronal apoptosis. PI3K dependent signalling upregulates Orai1, a pore forming channel protein accomplishing store operated Ca2+ entry (SOCE). Increased Orai1 expression and SOCE have been shown to confer survival of tumor cells. SOCE could be up-regulated by lithium. The present study explored, whether SOCE and/or apoptosis are altered in ChAc fibroblasts and could be modified by lithium treatment. METHODS: Fibroblasts were isolated from ChAc patients and age-matched healthy volunteers. Cytosolic Ca2+ activity ([Ca2+]i) was estimated from Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 µM), and apoptosis from annexin-V/propidium iodide staining quantified in flow cytometry. RESULTS: SOCE was significantly smaller in ChAc fibroblasts than in control fibroblasts. Lithium (2 mM, 24 hours) significantly increased and Orai1 blocker 2-Aminoethoxydiphenyl Borate (2-APB, 50 µM, 24 hours) significantly decreased SOCE. Annexin-V-binding and propidium iodide staining were significantly higher in ChAc fibroblasts than in control fibroblasts. In ChAc fibroblasts annexin-V-binding and propidium iodide staining were significantly decreased by lithium treatment, significantly increased by 2-APB and virtually lithium insensitive in the presence of 2-APB. CONCLUSIONS: In ChAc fibroblasts, downregulation of SOCE contributes to enhanced susceptibility to apoptosis. Both, decreased SOCE and enhanced apoptosis of ChAc fibroblasts can be reversed by lithium treatment.


Subject(s)
Calcium Release Activated Calcium Channels/metabolism , Fibroblasts/drug effects , Lithium/pharmacology , Neuroacanthocytosis/pathology , Apoptosis/drug effects , Boron Compounds/pharmacology , Calcium/metabolism , Calcium Release Activated Calcium Channels/antagonists & inhibitors , Calcium-Transporting ATPases/metabolism , Case-Control Studies , Cell Survival/drug effects , Cells, Cultured , Down-Regulation/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Fura-2/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Microscopy, Fluorescence , Neuroacanthocytosis/metabolism
7.
J Neural Transm (Vienna) ; 117(1): 69-76, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19763772

ABSTRACT

Differential diagnosis of parkinsonian syndromes is a major challenge in movement disorders. Dysautonomia is a common feature but may vary in clinical severity and onset. The study attempted to find a pattern of autonomic abnormalities discriminative for patients with different parkinsonian syndromes. The cross-sectional study included 38 patients with multiple system atrophy (MSA), 32 patients with progressive supranuclear palsy (PSP), 26 patients with idiopathic Parkinson's disease (IPD) and 27 age-matched healthy controls. Autonomic symptoms were evaluated by a standardized questionnaire. The performance of patients and controls was compared on five autonomic function tests: deep breathing, Valsalva manoeuvre, tilt-table testing, sympathetic skin response, pupillography, and 24-h ambulatory blood pressure monitoring (ABPM). Disease severity was significantly lower in IPD than PSP and MSA. Except for pupillography, none of the laboratory autonomic tests distinguished one patient group from the other alone or in combination. The same was observed on the questionnaire. Receiver operating characteristic curve revealed discriminating performance of pupil diameter in darkness and nocturnal blood pressure change. The composite score of urogenital and vasomotor domains significantly distinguished MSA from IPD patients but not from PSP. Our study supports the observation that even mild IPD is frequently indistinguishable from more severe MSA and PSP. Thus, clinical combination of motor and non-motor symptoms does not exclusively point at MSA. Pupillography, ABPM and the questionnaire may assist in delineating the three syndromes when applied in combination.


Subject(s)
Multiple System Atrophy/diagnosis , Parkinson Disease/diagnosis , Primary Dysautonomias/diagnosis , Supranuclear Palsy, Progressive/diagnosis , Aged , Blood Pressure Monitoring, Ambulatory , Cross-Sectional Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Multiple System Atrophy/physiopathology , Parkinson Disease/physiopathology , Primary Dysautonomias/physiopathology , ROC Curve , Reflex, Pupillary/physiology , Severity of Illness Index , Skin Physiological Phenomena , Supranuclear Palsy, Progressive/physiopathology , Surveys and Questionnaires
8.
Neuroimage ; 49(1): 158-68, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19631275

ABSTRACT

BACKGROUND AND OBJECTIVE: Biomarkers to monitor neurological dysfunction in autosomal dominant inherited spinocerebellar ataxias (SCA) are lacking. We therefore aimed to visualize, quantify and correlate localized brain atrophy with clinical symptoms in SCA1, SCA3, and SCA6. METHODS: We compared patients suffering from SCA1 (n=48), SCA3 (n=24), and SCA6 (n=10) with 32 controls using magnetic resonance imaging (MRI) on four different scanners in eight centers followed by voxel-based morphometry (VBM) and quantitative three-dimensional (3D) volumetry. RESULTS: SCA1 and SCA3 patients presented with severe atrophy in total brainstem (consisting of midbrain, pons, and medulla), pons, medulla, total cerebellum, cerebellar hemispheres and cerebellar vermis, putamen and caudate nucleus. Atrophy in the cerebellar hemispheres was less severe in SCA3 than in SCA1 and SCA6. Atrophy in SCA6 was restricted to the grey matter of the cerebellum (VBM and volumetry), total brainstem and pons (volumetry only). Overall, we did not observe substantial atrophy in the cerebral cortex. A discriminant analysis taking into account data from pons, cerebellar hemispheres, medulla, midbrain and putamen achieved a reclassification probability of 81.7% for SCA1, SCA3, and SCA6. The repeat length of the expanded allele showed a weak negative correlation with the volume of the brainstem, pons, caudate nucleus and putamen in SCA3, and a weak correlation with the pons in SCA1, whereas no such correlation was found in SCA6. Clinical dysfunction as measured by the Scale for the Assessment and Rating of Ataxia (SARA) and the Unified Huntington's Disease Rating Scale functional assessment correlated best with the atrophy of pons in SCA1, with total brainstem atrophy in SCA3 and atrophy of total cerebellum in SCA6. CONCLUSIONS: Our data provide strong evidence that MRI is an attractive surrogate marker for clinical studies of SCA. In each SCA genotype clinical dysfunction may be caused by different patho-anatomical processes.


Subject(s)
Brain/pathology , Spinocerebellar Ataxias/pathology , Adolescent , Adult , Age of Onset , Aged , Atrophy/pathology , Brain Stem/pathology , Cerebellum/pathology , DNA/genetics , Diagnosis, Differential , Disease Progression , Female , Humans , Huntington Disease/pathology , Linear Models , Magnetic Resonance Imaging , Male , Middle Aged , Repetitive Sequences, Nucleic Acid , Sex Characteristics , Spinocerebellar Ataxias/diagnosis , Spinocerebellar Ataxias/genetics , Young Adult
9.
Virtual Mentor ; 7(2)2005 Feb 01.
Article in English | MEDLINE | ID: mdl-23249454
SELECTION OF CITATIONS
SEARCH DETAIL
...